

ENVIRONMENTAL INVESTIGATION SERVICES

REPORT

то

MIDSON GROUP PTY LTD

ON

STAGE 2 ENVIRONMENTAL SITE ASSESSMENT

FOR

PROPOSED RESIDENTIAL AGED CARE FACILITY DEVELOPMENT

AT

238 MONA VALE ROAD, ST. IVES

REF: E26305Krpt2.1

NOVEMBER 2014

Document Distribution	Record		
Report Reference	Report Status/Revision	Distribution	Report Date
E26305Krpt2	Final	Midson Group Pty Ltd	29 March 2013
E26305Krpt2.1	Revision 1	Midson Group Pty Ltd	3 November
			2014

Report prepared by:	Cameron Hollands Environmental Scientist
Report reviewed by:	Adrian Kingswell Principal

© Document Copyright of Environmental Investigation Services (EIS), a division of Jeffery and Katauskas Pty Ltd.

This Report (which includes all attachments and annexures) has been prepared by EIS for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between EIS and the Client and is therefore subject to:

- a) EIS's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to EIS; and
- c) The terms of contract between EIS and the Client, including terms limiting the liability of EIS.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of EIS which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of EIS does so entirely at their own risk and to the fullest extent permitted by law, EIS accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

TABLE OF CONTENTS

1	INTRO	DUCTION	1
	1.1	Proposed Development Details	1
	1.2	Objectives	1
	1.3	Scope of Work	2
2	BACK	GROUND	3
3	DATA	QUALITY OBJECTIVES	4
	3.1	DQOs for the Assessment	4
	3.2	DQIs for Analytical Data	6
4	SITE II	NFORMATION AND PHYSICAL SETTING	9
	4.1	Site Identification	9
	4.2	Site Location and Setting	9
	4.3	Topography	9
	4.4	Site Inspection	9
5	SITE A	ASSESSMENT CRITERIA (SAC)	11
	5.1	Hydrocarbon Fractions	12
	5.2	General Approvals of Immobilisation (GAI)	12
6	-	TIGATION PROCEDURE	14
	6.1	Soil Sampling Rationale	14
	6.2	Groundwater Sampling	16
	6.3	Groundwater Sampling Rationale	16
	6.4	Laboratory Analysis	17
	6.5	Soil and Groundwater Analytical Schedule	18
7	INVES	TIGATION RESULTS	19
	7.1	Subsurface Conditions	19
	7.2	Soil Laboratory Results	20
	7.3	Groundwater Laboratory Results	22
8	QA/QQ	C ASSESSMENT	23
9	DISCU	JSSION	26
	9.1	Soil Contamination	26
	9.2	Summary of Leachate Results	26
	9.3	Waste Classification	27
	9.4	Groundwater Contamination	28
	9.5	Assessment of Risk	29
10	CONC	LUSION	31
	10.1	Regulatory Requirement	31
11	LIMIT	ATIONS	32

List of In-Text Tables

Important Information About The Site Assessment Report

REPORT FIGURES:

Figure	1:	Site	Location	Plan

- Figure 2: Site Layout and Borehole Location Plan
- Figure 3: Borehole Location Plan and Contamination Data

TABLES WITH ANALYTICAL RESULTS:

- Table A-1: Chemical Contaminant Criteria for Waste Classification
- Table A-2: Chemical Contaminant Criteria for VENM
- Table B: Summary of Soil Laboratory Results
- Table C: Summary of Soil Laboratory Results Waste Classification
- Table D: Summary of Soil Laboratory Results TCLP
- Table E: Summary of Groundwater Laboratory Results

TABLE OF CONTENTS

- Table F:
 Soil Intra-Laboratory Duplicate Results & RPD Calculations
- Table G: Soil Inter-Laboratory Duplicate Results & RPD Calculations
- Table H: Groundwater Intra-Laboratory Duplicate Results & RPD Calculations
- Table I: Summary of QA/QC Trip Spike, Field Blank & Rinsate Results

APPENDICES:

- Appendix A: Borehole Logs Inclusive and Geotechnical Explanatory Notes
- Appendix B: Laboratory Reports and Chain of Custody Documents
- Appendix C: Abbreviations, Sampling Protocols and QA/QC Definitions
- Appendix D:
- Equipment Calibration Records

1 INTRODUCTION

Midson Group Pty Ltd (the 'client') commissioned Environmental Investigation Services (EIS), a division of Jeffery & Katauskas Pty Ltd (J&K), to undertake a Stage 2 Environmental Site Assessment (ESA) for the proposed residential aged care facility development at 238 Mona Vale Road, St Ives, NSW 2075 ('the site').

The site is identified as Lot 1, 2 and 3 in DP1091770 and Lot 1 in DP238521. At the time of this investigation the site was occupied by a disused garden centre and a residential dwelling.

The ESA was undertaken generally in accordance with EIS proposals (Ref: EP6921Krev1 and EP8214Krev1) of 18 February 2013 / 30 July 2014 and written email acceptance from Midson Group.

A geotechnical investigation was undertaken in conjunction with the ESA by JK Geotechnics¹. The results of the investigation are presented in a separate report (Ref. 26305Zrpt2, dated March 2012²).

1.1 **Proposed Development Details**

The proposed development includes demolition of all buildings and structures on the site and construction of a new residential aged care facility. The proposed new development includes three above ground levels incorporating residential apartments and various facilities such as function rooms, laundry, lounge rooms, dining rooms, hairdresser, waste storage, a store, cafe, activities room. A single level basement car parking area is proposed beneath the west wing of the building adjacent to Link Road. The building layout is generally L-shaped in plan view with a 5m set back from Link Road and Mona Vale Road. A 9m setback is proposed on the Killeaton Street side of the site, this area includes driveways, courtyards and landscaped areas.

1.2 Objectives

The objectives of the ESA are to:

- Assess the potential for human health or environmental risks posed by the contaminants identified in the Stage 1 ESA; and
- Provide a waste classification for the off-site disposal of soil excavated for the development.

¹Geotechnical division of J&K Group ²Referred to as JK Report

1.3 Scope of Work

The scope of work included:

- A review of the previous Stage 1 ESA report prepared by EIS;
- Design and implementation of a field sampling and laboratory analysis program;
- Interpretation of the analytical results based on the Site Assessment Criteria (SAC) adopted for the ESA; and
- Preparation of a report presenting the results of the ESA.

The ESA was generally undertaken with reference to regulations/guidelines outlined in the table below. Individual guidelines applicable for this ESA are also referenced within the text of the report.

Table 1-1: Guidelines

Guidelines/Regulations/Documents
Contaminated Land Management Amendment Act (2008 ³)
State Environmental Planning Policy No.55 – Remediation of Land (1998 ⁴)
NSW EPA Guidelines for Consultants Reporting on Contaminated Sites (1997 ⁵)
Guidelines on the Duty to Report Contamination ⁶
National Environmental Protection (Assessment of Site Contamination) Amendment Measure
(2013 ⁷)
NSW EPA Contaminated Sites Sampling Design Guidelines (1995 ⁸)
NSW DECCW Waste Classification Guidelines - Part 1: Classifying Waste (2009 ⁹)
Working with Asbestos Guide (2008 ¹⁰)
Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000 ¹¹)
Australian Drinking Water Guidelines (2011 ¹²)

⁷ National Environment Protection Council (NEPC), (2013), *National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1).* (referred to as NEPM 2013)

³Contaminated Land Management Amendment Act, NSW Government Legislation, 2008 (CLM Amendment Act 2008)

⁴State Environmental Planning Policy No. 55 – Remediation of Land, NSW Government, 1998 (SEPP55)

⁵Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 1997 (Reporting Guidelines 1997)

⁶*Guidelines on the Duty to Report Contamination*, NSW EPA, Draft 2011 (Duty to Report Contamination 2011)

⁸Contaminated Sites Sampling Design Guidelines, NSW EPA, 1995 (EPA Sampling Design Guidelines 1995)

⁹Waste Classification Guidelines, Part 1: Classifying Waste, NSW DECCW, 2009 (Waste Classification Guidelines 2009)

¹⁰Working with Asbestos Guide, NSW WorkCover, 2008 (WorkCover Working with Asbestos Guide 2008)

¹¹Australian and New Zealand Guidelines for Fresh and Marine Water Quality, ANZECC, 2000 (ANZECC 2000)

¹²Australian Drinking Water Guidelines, National Health and Medical Research Council, 2011 (NHMRC 2011)

2 BACKGROUND

EIS have previously prepared the following reports for the site:

- EIS (2013a), Report to Midson Group Pty Ltd on Stage 1 Preliminary Contamination Assessment for Proposed Residential Aged Care Facility Development at 238 Mona Vale Road, St. Ives, Ref: E26305Krpt, dated February 2013; and
- EIS (2013b), Report to Midson Group Pty Ltd on Stage 2 Preliminary Contamination Assessment for Proposed Residential Aged Care Facility Development at 238 Mona Vale Road, St. Ives, Ref: E26305Krpt2, dated March 2013.

The previous EIS investigations to date have identified the following:

- The site history indicates agricultural use (farm, orchid and nursery) since at least 1909;
- Fill material was encountered across the site with a depth range of 0.075m to 0.65m, the average depth 0.29m;
- Fill analysis identified elevated levels of arsenic, lead and trace amounts of Organochlorine pesticides (OCP);
- At one location, elevated arsenic was found in the shallow natural soil;
- Groundwater analysis identified elevated concentrations of copper, zinc (considered to be associated with urban water infrastructure and runoff) and OCP;
- Based on the historical use of the site and the soil/groundwater laboratory results, site contamination is considered to be associated with the use of pesticides; and
- The site history and laboratory data indicate a potential contamination issue associated with pesticide use.

3 DATA QUALITY OBJECTIVES

3.1 DQOs for the Assessment

The DQO process includes a clear statement of the objectives of the study and a methodology for collecting enough data of sufficient quality to support the decisions of the study. The DQOs provide a systematic approach for undertaking the assessment and outlines the criteria against which the data can be assessed.

A methodology for establishing the DQOs is presented in the US EPA document *Data Quality Objectives Process for Hazardous Waste Site Investigations* (2000¹³). This methodology has been adopted by the NEPC in NEPM 1999, AS4482.1-2005¹⁴ and the Site Auditor Guidelines 2006. The main steps involved in preparing the DQOs include:

- 1. State the problem;
- 2. Identify the decision;
- 3. Identify inputs into the decision;
- 4. Study boundaries;
- 5. Develop a decision rule;
- 6. Specify limits on decision errors; and
- 7. Optimise the design for obtaining data.

The first six steps provide qualitative and quantitative statements which are used in the final step to develop a data collection plan. The data is then assessed against adopted performance criteria.

3.1.1 State the Problem

The investigations previously undertaken at the site (see **Section 2**) have identified the potential for the site to have been contaminated by historical activities. The purpose of this assessment is to undertake soil and groundwater testing in order to identify the presence of contamination and assess the potential risk to human health and the environment.

3.1.2 Identify the Decision

The assessment aims to address the following decisions:

• Does the site history indicate previous land uses that may have resulted in contamination;

¹³Data Quality Objectives Process for Hazardous Waste Site Investigations, US EPA, 2000 (US EPA 2000) ¹⁴Guide to the Investigation and Sampling of sites with Potentially Contaminated Soil, Standards Australia, 2005 (AS 2005)

- Does the site inspection indicate the presence of potential on-site and/or off-site contamination sources;
- Are the contaminant concentrations above the site assessment criteria (SAC);
- Has the contamination source and extent been identified;
- Has groundwater been impacted;
- Is there potential for off-site migration of contamination;
- Does the contamination pose a potential human health risk;
- Does the contamination pose a potential ecological or environmental risk;
- Are there any potential receptors which may be impacted by the contamination; and
- Can remediation measures be adopted to make the site suitable for the proposed development.

3.1.3 Inputs into the Decision

The following inputs will be used to address the decisions:

Inputs	Details
Background Information	 Review of previous Stage 1 ESA prepared by EIS including: Site Inspection & Physical Setting;
	Site History Assessment
	Conceptual Site Model (CSM)
Sampling	Soil and groundwater sampling will be undertaken as outlined in Section 6.
Laboratory Analysis	Soil and groundwater samples will be analysed for the PCC identified in the EIS Stage 1 Assessment (Feb., 2013) outlined in Section 2 .
Assessment of Analytical Data	The Data Quality Indicators (DQIs) that will be used to assess the analytical data are outlined in Section 3.2 .
Assessment Criteria	Analytical results will be compared to the SAC outlined in Section 5 .

Table 3-1: Inputs into the Decision

3.1.4 Study Boundary

The ESA will be confined to the site boundaries as shown in Figure 2.

3.1.5 Develop a Decision Rule

The analytical results will be compared with the SAC as outlined in **Section 5**. Statistical analysis will be undertaken on the analytical results (if required) as outlined in the EPA Sampling Design Guidelines 1995. The following criteria will be adopted for the assessment:

- The 95% Upper Confidence Limit (UCL) value of the arithmetic mean concentration of each contaminant should be less than the SAC;
- The standard deviation (SD) of the results must be less than 50% of the SAC; and
- No single value exceeds 250% of the relevant SAC.

UCL calculations may not be required if all results are below the SAC. Further assessment or remediation will be required when the concentration of contaminants exceed the above criteria.

The groundwater analytical results will be compared to the Groundwater Investigation Levels (GILs) as outlined in **Section 5**. The results will be assessed as either above or below the GILs.

A review of the field and laboratory DQIs will be undertaken as outlined in **Section 3.2**.

3.1.6 Specify Limits on Decision Errors

Decision errors are false positive (i.e. stating the site is free of contamination when it is not) or false negative (i.e. stating that the site is contaminated when it is not). The more significant error is the false positive which may result in potential risks to human health and the environment. To account for this, the ESA has assumed that elevated concentrations of contaminants are present in the samples unless demonstrated otherwise.

3.1.7 Optimise the Design for Obtaining Data

The Site Auditor Guidelines 2006 recommend evaluating the data set as a whole to determine any limitations within the data set. The overall data set will be optimised by reviewing the data as the project proceeds. When necessary, adjustments will be made to the sampling or analytical program.

3.2 DOIs for Analytical Data

The analytical data will be assessed against the following DQIs: precision, accuracy, representativeness, completeness and comparability. Definitions of the individual DQIs

are presented in Appendix C. The table below outlines the steps that will be taken to address the DQIs:

Table	2 2.	
I able	3-2:	DUIS

Indicator	Methods
Completeness	Data and documentation completeness will be achieved by:
	 Preparation of chain of custody (COC) records;
	Review the laboratory sample receipt information;
	• Use of National Association of Testing Authorities (NATA) registered
	laboratories for all analysis;
	 Visual and PID screening of samples during the investigation; and
	Laboratory analysis to target PCC.
Comparability	Data comparability will be achieved by:
	 Maintaining consistency in sampling techniques;
	Use of appropriate preservation, storage and transport methods; and
	 Use of consistent analysis techniques and reporting standards by the laboratories.
Representativeness	Data representativeness will be achieved by:
	Appropriate coverage of sample locations across accessible areas of the
	site; and
	Representative coverage of analysis for PCC.
Precision	Precision will be achieved by:
	 Calculating the relative percentage difference (RPD) of duplicate samples;
	 The following acceptance criteria will be used to assess the RPD results:
	results > 10 times the practical quantitation limit (PQL), RPDs < 50% are acceptable;
	 results between 5 and 10 times PQL, RPDs < 75% are acceptable; results > 5 times PQL, RPDs < 100% are acceptable; and
	 An explanation is provided if RPD results are outside the acceptance
	criteria. As a conservative measure, the higher value is adopted wher
	the value exceeds the SAC.
Accuracy	Accuracy will be achieved by:
·	 Use of trained and qualified field staff;
	 Appropriate industry standard sampling equipment and decontamination procedures;
	 Sampling and screening equipment will be factory calibrated on a
	regular basis. Calibration will be checked internally prior to use;
	 Sampling and equipment decontamination;

 Collection and analysis of field Quality Assurance (QA) and Control (QC) samples for PCC; As a minimum, the field QA/QC analysis will include: > 5% of samples as intra-laboratory duplicates; > 5% of samples as intra-laboratory duplicates; > 1 trip blank; > 1 rinsate sample of field equipment, and > 1 trip spike sample per batch of volatiles; Acceptable concentrations in trip blanks, trip spikes and field samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time an procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: > <u>RPDs</u>: results that are < 5 times the PQL, any RPD is acceptal results > 5 times the PQL, RPDs between 0-5 acceptable; > <u>LCS recovery and matrix spikes</u>: 0 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	Quali
 As a minimum, the field QA/QC analysis will include: 5% of samples as inter-laboratory duplicates; 5% of samples as intra-laboratory duplicates; 1 trip blank; 1 rinsate sample of field equipment, and 1 trip spike sample per batch of volatiles; Acceptable concentrations in trip blanks, trip spikes and field samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> results that are < 5 times the PQL, any RPD is acceptall results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes:</u> 70-130% recovery acceptable for metals and inorganics o 60-140% recovery acceptable for organics; and 	
 5% of samples as inter-laboratory duplicates; 5% of samples as intra-laboratory duplicates; 1 trip blank; 1 rinsate sample of field equipment, and 1 trip spike sample per batch of volatiles; Acceptable concentrations in trip blanks, trip spikes and field samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> results that are < 5 times the PQL, any RPD is acceptall results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes:</u> TO-130% recovery acceptable for metals and inorganics o 60-140% recovery acceptable for organics; and 	
 5% of samples as intra-laboratory duplicates; 1 trip blank; 1 rinsate sample of field equipment, and 1 trip spike sample per batch of volatiles; Acceptable concentrations in trip blanks, trip spikes and field samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> results that are < 5 times the PQL, any RPD is acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics o 60-140% recovery acceptable for organics; and 	
 > 1 trip blank; > 1 rinsate sample of field equipment, and > 1 trip spike sample per batch of volatiles; Acceptable concentrations in trip blanks, trip spikes and field samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: > <u>RPDs:</u> o results that are < 5 times the PQL, any RPD is acceptall o results > 5 times the PQL, RPDs between 0-5 acceptable; > <u>LCS recovery and matrix spikes:</u> 70-130% recovery acceptable for metals and inorganics o 60-140% recovery acceptable for organics; and 	
 1 rinsate sample of field equipment, and 1 trip spike sample per batch of volatiles; Acceptable concentrations in trip blanks, trip spikes and field samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> results that are < 5 times the PQL, any RPD is acceptal or results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes:</u> 70-130% recovery acceptable for metals and inorganics of 60-140% recovery acceptable for organics; and 	
 1 trip spike sample per batch of volatiles; Acceptable concentrations in trip blanks, trip spikes and field samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> results that are < 5 times the PQL, any RPD is acceptal o results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes:</u> 70-130% recovery acceptable for metals and inorganics o 60-140% recovery acceptable for organics; and Non-compliance for metals and inorganics 60-140% recovery acceptable for organics; and Non-compliance for metals and inorganics Non-compliance for organics; and Non-compliance for organics; and Non-compliance for metals and inorganics Non-compliance for organics; and Non-compliance for organics; and Non-compliance for organics; and Non-compliance for metals and inorganics Non-compliance for organics; and Non-compliance for organics; and Non-compliance for organics; and Non-compliance for organics; and Non-compliance for organics; Non-compliance for organics;	
 Acceptable concentrations in trip blanks, trip spikes and field samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> results that are < 5 times the PQL, any RPD is acceptable results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes:</u> 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	
 samples. Non-compliance to be documented in the report; Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs</u>: results that are < 5 times the PQL, any RPD is acceptal o results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics o 60-140% recovery acceptable for organics; and 	
 Appropriate sample preservation, handling, holding time as procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs</u>: results that are < 5 times the PQL, any RPD is acceptal or results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics or 60-140% recovery acceptable for organics; and Appropriate sample preservation acceptable for organics; and Appropriate sample preservation Appropriate recovery acceptable for organics; and Appropriate recovery acceptable for organics; and	rinsa
 procedure; Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>PPDs</u>: results that are < 5 times the PQL, any RPD is acceptall results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	
 Review of the primary laboratory QA/QC data including surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> results that are < 5 times the PQL, any RPD is acceptal o results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes:</u> 70-130% recovery acceptable for metals and inorganics o 60-140% recovery acceptable for organics; and Review of the primary laboratory QA/QC and primary laboratory QA/QC and primary laboratory QA/QC acceptable for organics; and Review of the primary laboratory QA/QC acceptable for organics; and QA/QC acceptable for organics; and Review of the primary laboratory QA/QC acceptable for organics; and Review of the primary laboratory QA/QC acceptable for organics; and Review of the primary laboratory QA/QC acceptable for organics; and Review of the primary laboratory QA/QC acceptable for organics; and Review of the primary laboratory QA/QC acceptable for organics; and Review of the primary laboratory QA/QC acceptable for organics; and Review of the primary laboratory documentable;	d CO
 surrogate recovery, repeat analysis, blanks, laboratory control (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs</u>: results that are < 5 times the PQL, any RPD is acceptal or results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics or 60-140% recovery acceptable for organics; and 	
 (LCS) and matrix spikes; The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs</u>: results that are < 5 times the PQL, any RPD is acceptall results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	RPD
 The following acceptance criteria will be used to assess the laboratory QA/QC results. Non-compliance to be documented: <u>RPDs</u>: results that are < 5 times the PQL, any RPD is acceptalle results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	sample
 laboratory QA/QC results. Non-compliance to be documented: <u>RPDs</u>: results that are < 5 times the PQL, any RPD is acceptal results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	
 <u>RPDs</u>: results that are < 5 times the PQL, any RPD is acceptal results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	prima
 results that are < 5 times the PQL, any RPD is acceptal results > 5 times the PQL, RPDs between 0-5 acceptable; LCS recovery and matrix spikes: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	
 results > 5 times the PQL, RPDs between 0-5 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	
 acceptable; <u>LCS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	
 LCS recovery and matrix spikes: 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and)% a
 70-130% recovery acceptable for metals and inorganics 60-140% recovery acceptable for organics; and 	
 60-140% recovery acceptable for organics; and 	
 10-140% recovery acceptable for VOCs; 	
Surrogate and Trip Spike recovery:	
 60-140% recovery acceptable for general organics; and 	
 10-140% recovery acceptable for VOCs; Disclass All loss than POL (ALTPOL) and 	
Blanks: All less than PQL (ALTPQL); and	
Reporting to industry standards.	

4 SITE INFORMATION AND PHYSICAL SETTING

4.1 Site Identification

Site Address:	238 Mona Vale Road, St Ives, NSW 2075
Lot & Deposited Plan:	Lot 1, 2 and 3 in DP1091770 and Lot 1 in DP238521
Current Land Use:	Commercial
Proposed Land Use:	Commercial
Local Government Authority:	Ku-Ring-Gai Council
Current Zoning:	R3 Medium Density Residential (LEP 2012)
Site Area:	5,612m ²
RL (AHD) (approx.):	155m
Geographical Location (MGA)	N: 6221320
(approx.):	E: 1443520
Site Location Plan:	Figure 1
Site Layout and Borehole Location	Figure 2
Plan:	

4.2 Site Location and Setting

The site is located within the metropolitan area of Sydney, approximately 17km from the Sydney CBD. The surrounding areas are predominantly residential, with the exception of commercial properties located to the south-east of the site. The site is triangular shaped and extends from Killeaton Street to the north, Link Road to the south-west and Mona Vale Road to the south-east boundary.

4.3 Topography

The regional topography is characterised by slightly undulating hill slopes of approximately 3° - 8° . The site is located within a low depression with topography falling towards the site centre at approximately 2° - 3° . The site topography had been altered to accommodate the existing development and included several terraced areas retained by brick/concrete walls (less than 1m high). The lowest area of the site appeared to be the central section, with the lowest point located in the central north section adjacent to Killeaton Street. The layout of the site stormwater system suggests that water was directed to the lowest point of the site.

4.4 Site Inspection

A walkover inspection of the site and immediate surrounds was undertaken on 5 February 2013. The inspection was limited to accessible areas of the site and included an internal inspection of the majority of the buildings.

At the time of the inspection, the site was occupied by a disused garden centre which generally consisted of gravel yards, a hardstand asphaltic concrete car park and concrete paved footpaths. A concrete slab was located in the north-west section of the site. The majority of the site was generally open apart from a network of shade providing structures located along the south, west and south-east sections of the site. Various trees and shrubs were present in flowerbeds throughout the site.

A wooden building with a colourbond awning was located in the north-east corner of the site. An unmarked and partially exposed water pipe was observed in this area and was presumed to be associated with the former nursery's watering system. A single storey timber and fibro building was located adjacent to the entrance, off Killeaton Street. This building appeared to have been used as a former nursery with a network of awnings attached to the rear. A tin roof shed (possibly used for storage) with an exposed earth floor was situated next to the concrete slab at the north-west section of the site. The earth floor inside the shed appeared to be stained. A disused single-storey, brick and fibro residential building with a tiled roof was located along the southeast boundary. A toilet block and storage shed were semi-detached to the south side of the residential building.

The surrounding land use consisted of low to high density residential developments to the north and south west of the site. The area to the south east of the site comprised of commercial properties including a childcare centre and church.

5 SITE ASSESSMENT CRITERIA (SAC)

The SAC adopted for this ESA are outlined in the table below. The SAC has been derived from NEPM 2013 and other guidelines as outlined in **Section** 1.3. Explanatory notes are included in the attached appendices.

The guideline values for individual contaminants outlined in Schedule B1 of the NEPM 2013 are reproduced in the appendices. The criterion for the individual contaminants analysed for this assessment are presented in the attached report tables.

Guideline	Applicability
Health	The proposed land use is high density residential. The HIL-B criteria has
Investigation	been adopted for this ESA.
Levels (HILs)	
Health Screening	The HSL-B criteria for soil has been adopted for this ESA.
Levels (HSLs)	
	An assessment of soil vapour is outside the scope of this ESA. Further
	consideration of vapour risks would be required in the event that particular contaminants are identified during the ESA.
Ecological	A detailed assessment of ecological risk has not been undertaken for this
Assessment	ESA. We have adopted the most conservative guideline concentrations as a
Criteria	preliminary screening.
	The EILs for selected metals have been derived using the ABC values for
	high traffic (25 th percentiles) areas for old suburbs of NSW published in Olszowy et. al. (1995 ¹⁵).
Management Limits for TPH	The site history assessment has not identified any USTs or other fuel storage facilities at the site. These limits are not considered necessary for this ESA.
Asbestos in Soil	The 'presence/absence' of asbestos in soil has been adopted as the assessment criterion for the Preliminary Site Investigation (PSI).
Waste	The proposed development includes excavation for a basement level. A WC
Classification	will be required for the off-site disposal of material excavated for the
(WC) Criteria	development. The criteria outlined in the Waste Classification Guidelines

Table 5-1: SAC Adopted for this Investigation

¹⁵ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4*. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.

Guideline	Applicability		
Groundwater	ANZECC 2000:		
Investigation	The closest receiving water body in the vicinity of the site is Ku-Ring-Gai		
Levels (GILs)	Creek which is located 650m down gradient from the site. This water body predominantly sustains a freshwater ecosystem. Hence the freshwater trigger values have been adopted for the assessment. The NSW EPA promotes the use of trigger values for the protection of 95% of aquatic ecosystems, except where the contaminants have the potential to bio- accumulate, in which case the 99% trigger values are recommended. The 95% trigger values have been adopted for this assessment. Where necessary, the low reliability trigger values are quoted.		
	Abwg 2011: The groundwater bore search did not indicate the presence of bores registered for domestic use in the vicinity of the site. The abstraction and use of groundwater for drinking purposes is unlikely to occur at the site. These guidelines have not been adopted.		
	<u>USEPA:</u> In the absence of locally endorsed guidelines in groundwater, the USEPA Region 9 PRGs for 'Tap Water' have been adopted. It is noted that these guidelines have not been endorsed by NSW EPA and are used only as a preliminary screening tool.		

5.1 <u>Hydrocarbon Fractions</u>

The EIS 2013b ESA was undertaken prior to the finalisation of the new NEPM 2013. Assessment of the old Total petroleum hydrocarbon (TPH) results was restricted by the fact that the guidelines for the Health Screening Level (HSL) TPH fractions specified in Schedule B1 of the NEPM 2013 are slightly different to the TPH fractions presented in the old laboratory reports dated 2011. In this assessment we have not attempted to re-calculate the new fractions, we have simply assessed the old TPH fractions against the new TPH fractions specified in the NEPM 2013.

5.2 General Approvals of Immobilisation (GAI)

Significant amounts of waste ash and gravely slag were available in the late nineteenth and early twentieth centuries as a result of the use of coal for industrial and domestic heating purposes. Widespread use of ash waste (either as ash or mixed with other soil and waste materials) as fill material was common in the suburbs of Sydney at this time.

To account for the presence of ash and slag, the NSW EPA has published the following:

Approval Number	Waste Stream	Contaminants	Waste Assessment Requirements
1999/05 ¹⁶	Ash, Ash- contaminated natural excavated materials or coal-contaminated natural excavated material	Polycyclic Aromatic Hydrocarbons (PAHs) including Benzo(a)pyrene (B(a)P)	The SCC limits for PAHs and B(a)P outlined in the Waste Classification Guidelines 2009 do not apply for the assessment of this waste stream. The material can be classified according to the leachable concentration (TCLP) value of B(a)P alone. Disposal restrictions apply for material classified under this GAI.
1999/07 ¹⁷	Metallurgical furnace slag or metallurgical furnace slag contaminated natural excavated materials	Beryllium, Chromium (VI), lead, nickel, PAHs and B(a)P	The SCC limits for these contaminants outlined in the Waste Classification Guidelines 2009 do not apply for the assessment of this waste stream. The material can be classified according to their leachable concentrations (TCLP) values alone.

Table 5-2: GAIs

¹⁶ <u>http://www.environment.nsw.gov.au/resources/waste/GenImmobApp</u> 1999-05 Ash ACNEM or CCNEM.pdf (GAI 1999/05)

¹⁷ http://www.environment.nsw.gov.au/resources/waste/GenImmobApp 1999-

⁰⁷ Metallurgical furnace slag.pdf (GAI 2009/07)

6 INVESTIGATION PROCEDURE

6.1 Soil Sampling Rationale

The NSW EPA Sampling Design Guidelines 1995 recommend a sampling density for a contamination assessment based on a systematic sampling pattern. Based on the size of the investigation area, the guidelines provide a minimum number of sampling points required for the investigation.

The guidelines recommend sampling from a minimum of 14 evenly spaced sampling points for a site of this size (approximately 5,570m²).

Samples for this investigation were obtained from the following number of sampling points for each stage of the ESA:

- February 2013: Fourteen (14) evenly spaced sampling points as shown on the attached Figure 2.
- August 2014: Twelve (12) additional boreholes generally located between the previous boreholes and in accessible areas of the site.

This minimum sampling density has been meet.

Sampling was not undertaken in inaccessible areas of the site such as beneath existing buildings.

6.1.1 Soil Sampling Methods

Sampling locations were set out using a tape measure. Locations were marked using spray paint. The sampling locations were cleared for underground services prior to drilling.

Boreholes BH101 to BH106 were drilled on the 28 February 2013 using a track mounted hydraulically operated drill rig equipped with spiral flight augers. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger when conditions did not allow use of the SPT sampler.

Boreholes BH107 to BH114 inclusive were drilled on the 25 and 26 February 2013 using hand equipment.

Boreholes BH201 to BH212 inclusive were drilled on the 7 August 2014 using hand equipment.

Soil samples were collected from the fill and natural profiles encountered during the investigation. Additional fill samples were obtained when relatively deep fill (>0.5m) was encountered. Samples were also obtained when there was a distinct change in lithology or based on the observations made during the investigation. All samples were recorded on the borehole logs attached in Appendix A.

During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis.

Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags. Sampling personnel used disposable nitrile gloves during sampling activities. The samples were labelled with the job number, sampling location, sampling depth and date.

6.1.2 VOC Screening

A portable Photoionisation Detector (PID) was used to screen the samples for the presence of VOCs and to assist with selection of samples for BTEX analysis.

The sensitivity of the PID is dependent on the organic compound and varies for different mixtures of hydrocarbons. Some compounds give relatively high readings and some can be undetectable even though present in identical concentrations. The portable PID is best used semi-quantitatively to compare samples contaminated by the same hydrocarbon source.

The PID is calibrated before use by measurement of an isobutylene standard gas. All the PID measurements are quoted as parts per million (ppm) isobutylene equivalents.

PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases. The PID headspace data is presented on the COC documents.

6.1.3 Decontamination and Sample Preservation

Details of the decontamination procedure adopted during sampling are presented in Appendix C. Where applicable, the sampling equipment was decontaminated using a scrubbing brush and potable water and Decon 90 solution (phosphate free detergent) followed by rinsing with potable water. A rinsate sample was obtained during the decontamination process as part of the field QA/QC.

Soil samples were preserved by immediate storage in an insulated sample container with ice in accordance with AS4482.1-2005 and AS4482.2-1999¹⁸ as summarised in the following table:

Analyte	Preservation	Storage	
Heavy metals	Unpreserved glass jar with Teflon lined lid	Store at <4°, analysis within 28 days (mercury and Cr[VI]) and 180 days (other metals).	
VOCs (TPH/BTEX)	As above	Store at $<4^{\circ}$, analysis within 14 days	
PAHs, OCP, OPP & PCBs	As above	Store at $<4^{\circ}$, analysis within 14 days	
Asbestos	Sealed plastic bag	None	

Table 6-1: Soil Sample Preservation and Storage

On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures. Field sampling protocols adopted for this assessment are summarised in the attached Appendices.

6.2 Groundwater Sampling

6.3 Groundwater Sampling Rationale

The assessment included the installation of two temporary groundwater standpipes in selected boreholes at the site as shown on Figure 2. The two standpipes were located adjacent to the up gradient and the down gradient ends of the site. The rationale for these locations was to assess the groundwater flowing across the site. The direction of groundwater flow was assumed to be in a similar direction to the site slope.

6.3.1 Monitoring Well Installation

The temporary groundwater standpipes details are documented on appropriate borehole logs presented in Appendix A.

The temporary groundwater standpipes were installed to a depth of approximately 6m below existing site levels. The standpipes were constructed from 50mm diameter PVC that was hand slotted from the surface to the base of the boreholes.

¹⁸Guide to the Sampling and Investigation of Potentially Contaminated Soil Part2: Volatile Substances, Standards Australia, 1999 (AS 1999)

6.3.2 Groundwater Sampling

The temporary groundwater standpipes were sampled using a dedicated disposable PVC bailer

The duplicate sample was obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.

6.3.3 Sample Preservation

The samples were preserved in accordance with water sampling requirements detailed in NEPM 2013 and placed in an insulated container with ice. During the investigation, groundwater samples were preserved by immediate storage in an insulated sample container with ice in accordance with AS/NZS 5667.1:1998¹⁹ as summarised in the following table:

Analyte	Preservation	Storage
Heavy metals	45μm Filter, acidify with nitric acid to pH 1-2	Store at $<4^{\circ}$, analysis within 30 days
VOCs (mid to heavy fraction TPH)	Zero headspace, teflon seal	Store at $<4^{\circ}$, analysis within 7 days
VOCs (BTEX & light fraction TPH)	Zero headspace, Teflon seal, acidify with HCl to pH 1-2	Store at $<4^{\circ}$, analysis within 7 days
OPP/OCP/PCB	Nil	Store at $<4^{\circ}$, analysis within 7 days

 Table 6-2: Groundwater Sample Preservation and Storage

Notes:

1 – Analysing the sample for pH within 6 hours is not practical in most situations. In order to account for this, a calibrated field pH meter is used during sampling.

On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

6.4 Laboratory Analysis

The samples were analysed by the following laboratories:

Table 6-3: Laboratory Details

Samples	Laboratory	Report Reference	
All primary samples, intra-	Envirolab Services Pty Ltd, NATA	86615, 86615-A,	
laboratory duplicates, trip	Accreditation Number – 2901	86620, 114380 and	
blanks, trip spikes and field	(ISO/IEC17025 compliance)	114380-A.	

¹⁹Water Quality – Part 1: Sampling, Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation and Handling of Samples, Standards Australia, 1998 (AS/NZS 5667.1:1998)

Samples	Laboratory	Report Reference	
rinsate samples			
Inter-laboratory duplicates	National Measurement Institute (NMI), NATA Accreditation Number – 198	RN961074	

Samples were analysed by the laboratories using the analytical methods detailed in Schedule B(3) of NEPM (2013). Reference should be made to the laboratory reports attached in Appendix B for further details.

6.5 Soil and Groundwater Analytical Schedule

The soil and groundwater analytical schedule is outlined in the following table:

PCC	No. of Fill Soil Samples	No. of Natural Soil Samples	Groundwater Samples
Heavy Metals	27	11	2
TPH/BTEX	14	4	2
PAHs	14	4	2
OCPs	27	7	2
OPPs	26	7	2
PCBs	14	na	2
Asbestos	14	Na	Na

Table 6-4: Laboratory Analytical Schedule

Note:

Na – Not analysed

An additional 19 fill soil samples were analysed for Toxicity characteristic leaching procedure (TCLP) and 6 fill soil samples for (Australian standard leaching procedure) ASLP.

7 INVESTIGATION RESULTS

7.1 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in Appendix A for further details.

Table 7-1: 5	Summary of	⁵ Subsurface	Conditions
--------------	------------	-------------------------	------------

Profile	Description ¹
Pavement	Asphaltic pavement approximately 0.3m thick was encountered in BH107.
Fill	Fill was encountered from the surface in all the boreholes (except BH107) and extended to depths of approximately 0.15m to 0.8m. Boreholes BH204 and BH205 were terminated in the fill due to hand auger refusal.
	The fill comprised of: silty sandy gravel; gravelly silty sand; sandy silty gravel; silty sand; gravelly clayey sand; and silty clay. The fill contained inclusions of: fine to medium grained quartz, ironstone, sandstone and igneous gravel; trace of ash and slag; glass and concrete fragments; sand; and root fibres.
Natural Soil	Residual silty clay natural soil was encountered beneath the fill in the majority of the boreholes drilled for the assessment. The natural soil extended to the termination depth of the JK boreholes to a depth of approximately 9.4m. The silty clay was medium to high plasticity and contained inclusions of root fibres, ash and ironstone gravel.
Groundwater	Groundwater seepage was measured up to 5hrs after completion of drilling. Groundwater was encountered at various depths in all boreholes with the exception of BH106 which remained dry on completion of drilling.
	Temporary groundwater monitoring wells were installed in boreholes BH101 and BH102. SWL was measured in the monitoring wells at 4.46mBGL and 3.24mBGL respectively.

Note:

1 - Metres below ground level

7.1.1 VOC Screening

The PID soil sample headspace readings were all Oppm equivalent isobutylene indicating a lack of PID detectable volatile organic contaminants in the samples.

7.2 Soil Laboratory Results

The soil laboratory results are presented in Tables A to F attached to the report. The laboratory reports are presented in Appendix B. A summary of the results assessed against the SAC is presented below.

Table 7-2: Summary of Soil Laboratory Results

Analyte	Results Compared to SAC					
Heavy Metals	HILs: Elevated concentrations of arsenic and lead were encountered above the HIL-B criteria as outlined below:					
				SAC (r	SAC (mg/kg)	
	Sample	Depth	Description	<u>Arsenic</u> 500	<u>Lead</u> 1200	
	BH104	0.0-0.2	Fill	590	2300	
	BH111	0.0-0.5	Fill	700	-	
	BH111	0.05-0.1	Fill	570	-	
	BH114	0.2-0.4	Silty Clay / possibly fill	570	-	
	BH201	0.1-0.3	Fill	1600	-	
	BH204	0.1-0.3	Fill	1200	-	
	BH207	0.4-0.6	Fill	-	1600	
	BH211	0-0.1	Fill	-	2000	
	 4 lead results ranging from 1100mg/kg to 2300mg/kg; and 3 zinc results ranging from 250mg/kg to 660mg/kg. <u>WC:</u> Seventeen (17) arsenic and eighteen (18) lead results were greater than the CT1 and SCC1 criteria. TCLP leachates were prepared from these samples and analysed for heavy metals. All results were less than the TCLP1 criteria. 					
TPH	HSLs: All TPH results were below the HSL-B criteria. ESLs: One result was above the acceptance criterion for the F3 fraction. All remaining					
			ESL-UR&POS criteria.			

Analyte	Results Compared to SAC
BTEX	HSLs: All BTEX results were below the HSL-B criteria.
	ESLs: All BTEX results were below the ESL-UR&POS criteria.
	<u>WC:</u> All BTEX results were less than the relevant CT1 and SCC1 criteria.
PAHs	HILs: All PAH results were below the HIL-B criteria.
	HSLs: All naphthalene results were below the HSL-B criteria.
	ESLs: All benzo(a)pyrene results were below the ESL-UR&POS criteria,
	<u>EILs:</u> All naphthalene results were below the EIL-UR&POS criteria.
	WC: All PAH results were less than the relevant CT1 and SCC1 criteria.
OCPs & OPPs	HILs: All OCP and OPP results were below the HIL-B criteria.
	EILs: All DDT results were below the EIL-UR&POS criteria.
	<u>WC:</u> All OCP and OPP results were less than the relevant CT1 and SCC1 criteria.
PCBs	HILs: All PCB results were below the HIL-B criterion.
	<u>WC:</u> All PCB results were less than the SCC1 criterion.
Asbestos	PSI: Asbestos was not detected in the samples analysed for the investigation.
ASLP Leachates	ASLP leachates were prepared on nine selected fill samples and analysed for arsenic and lead. The ASLP arsenic results ranged from 0.23mg/L to 9.3mg/L. The ASLP lead results ranged from 0.15mg/L to 4.2mg/L.

Note:

WC – Waste Classification Guidelines 2009

7.3 Groundwater Laboratory Results

The groundwater laboratory results are presented in Table G attached to the report. The laboratory reports are presented in Appendix B. A summary of the results assessed against the GILs is presented below.

Analyte	Number of Samples Analysed	Results Compared to GILs
Heavy Metals	2	Elevated concentrations of copper and zinc were encountered above the GILs in the groundwater samples.
TPH & BTEX	2	All results were below the GILs.
PAHs	2	All results were below the GILs.
OCPs	2	Elevated concentrations of Aldrin, Dieldrin and Endosulfan were encountered in the groundwater sample obtained from BH101.
OPPs	2	All results were below the GILs.
PCBs	2	All results were below the GILs.

Table 7-3: Summary of Groundwater Laboratory Results

8 QA/QC ASSESSMENT

The QA/QC assessment includes a review of the DQIs established for the investigation (see **Section 3.2**). A summary of the field QA/QC samples are outlined below:

Table	8-1.	Field	OA/OC	Samples
rubic	0	i ioiu	QA/Q0	Oumpies

Field QA/QC	Frequency	Sample Details
Intra-	3 x soil and	• Dup 1 is a soil duplicate of sample BH108 (0.2-0.4m)
laboratory	1 x groundwater	• Dup A is a soil duplicate of sample BH205 (0-0.2m)
duplicates		• Dup B is a soil duplicate of sample BH210 (0-0.1m)
		• Dup 1 is a water duplicate of sample MW101
Inter- laboratory duplicates	1 x soil	• Dup 3 is a soil duplicate of sample BH110 (0-0.1m)
Field blanks (FB)	X 1	FB1 (sand blank) (28.2.13)
Rinsate (RS)	X 1	RS1 is a field rinsate from the SPT decontamination process (28.2.13).
Trip Spike (TS)	X 1	TS1 (water) is a BTEX spike (28.2.13).

An assessment of the DQIs is summarised in the following table.

Table	8-2:	Assessment	of	DQIs
-------	------	------------	----	------

Completeness	
Data and decomposition completeness uses achieved through the following measures.	

Data and documentation completeness was achieved through the following measures:

- Chain of custody (COC) records were prepared for each batch of samples sent to the labs (see Appendix B);
- Laboratory sample receipt information was reviewed for each batch (see Appendix B);
- NATA registered laboratories were used for all analysis;
- Visual observations and PID screening of samples was undertaken during the investigation as noted on the COC documents (see Appendix B); and
- All samples were analysed for the PCC identified in Section 2.

Comparability

Data comparability was achieved through the following measures:

- Similar sampling techniques were used during the investigation;
- Appropriate preservation, storage and transport methods were adopted for all samples; and

• Consistent analysis techniques and reporting standards were adopted by the laboratories.

Representativeness

Data representativeness was achieved through the following measures:

- The sampling plan was optimised to obtain adequate coverage of sample locations; and
- The assessment included a representative coverage of analysis for PCC.

Precision

Intra-laboratory RPD Results:

The intra-laboratory soil RPD results are summarised in the attached tables. The results indicated that field precision was generally acceptable. The RPD values for a range of individual heavy metals were outside the acceptance criteria. Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogenous matrices. As both the primary and duplicate sample results were less than the SAC (HILs) these exceedences are not considered to have had an adverse impact on the data set as a whole.

The intra-laboratory groundwater RPD results indicated that field precision was acceptable.

Inter-laboratory RPD Results:

The inter-laboratory soil RPD results are summarised in Table G. The results indicated that field precision was generally acceptable. The RPD values for lead and nickel were outside the acceptance criteria. Where applicable, the higher duplicate value has been adopted as a conservative measure. Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogenous matrices. The RPD exceedences are not considered to have had an adverse impact on the data set as a whole.

Accuracy

Accuracy was achieved through the following measures:

- Trained and qualified field staff were used for the investigation;
- Appropriate industry standard sampling equipment and decontamination procedures were adopted for the investigation as outlined in Appendix C;
- Sampling and screening equipment are routinely factory calibrated. An in-house calibration check was undertaken prior to using onsite. The calibration records are attached in Appendix D;
- Appropriate sample preservation, handling, holding time and COC procedures were adopted for the investigation;
- The report was prepared generally in accordance with Reporting Guidelines 1997; and
- Envirolab report 86620 commented that the OCP (in water) PQL was raised due to interference from analytes other than those being tested in the sample.

Trip Spike Results:

The BTEX results for the trip spikes ranged from 88% to 96% and indicated that field preservation methods were appropriate.

Field Rinsate Results:

The field rinsate results did not identify any cross-contamination artefacts associated with sampling equipment. All results were below the PQL.

Field Blank Results:

The trip blank results were all less than the PQLs.

• Review of laboratory QA/QC data is summarised below:

Laboratory Duplicate RPD Results:

Laboratory duplicate RPD results for the soil/groundwater analysis were generally within the acceptance criteria adopted by the laboratory/laboratories. Envirolab report 86615 commented that the RPD acceptance criteria were exceeded for samples 86615-1 and 86615-19. Triplicate results were therefore issued.

Matrix Spike Recovery:

Matrix spike recovery concentrations were within the acceptable limits of 60-140% for organics and 70-130% for inorganics.

Surrogate Spike Recovery:

Surrogate spike recovery concentrations were generally within the acceptable limits of 60-140% for organics and 10-140% for VOCs. Envirolab report 86615 commented that the arsenic surrogate concentration was not reported in soil sample 86615-3 due to the heterogeneous nature of the element/s in the sample. An acceptable LCS recovery was however obtained.

LCS recovery:

LCS recovery concentrations were within the acceptable limits of 60-140% for organics and 70-130% for inorganics.

The DQIs adopted for this investigation (see Section 3.2) have been addressed.

9 DISCUSSION

9.1 Soil Contamination

Elevated concentrations of contaminants were encountered in the fill and natural soil samples above the health based SAC. A summary of the elevated results is presented in the table below:

Analyte	SAC (mg/kg)	No. of Samples Analysed	No. of Results above SAC	Maximum Concentration
Arsenic	400	37	6	1600
Lead	1200	37	3	2300

Note:

1. Data shown for HILs only

Due to the contaminants encountered in the fill the material at these locations is not considered suitable for re-use of site. The natural soil in the vicinity of BH114 was also found to contain elevated concentrations of arsenic and is therefore not considered to be suitable for re-use of site. Refer to **Section 9.3** for disposal options.

The source of the lead contamination was considered to be associated with the presence of ash/slag in the fill. The source of the arsenic contamination was considered to be associated the possible former use of insecticides.

The attached Figure 2 indicates the approximate extent of the contaminated area based on the data obtained from the site investigations.

EIS are of the opinion that the soil contamination issues at the site can be managed by implementation of a Remedial Action Plan (RAP).

9.2 <u>Summary of Leachate Results</u>

The TCLP acid leachate results indicate that the samples are not leaching in significant quantities under acidic conditions.

The ASLP water leachate results indicate that the arsenic and lead in the samples obtained from BH201, BH204 and BH207 retained concentrations greater than 1mg/L which could potentially leach. We note that these boreholes are located in the impacted area as indicated on Figure 2 and are to be excavated and removed from site as part of the proposed development.

9.2.1 EILs

The majority of the fill samples encountered arsenic concentrations above the EIL. Copper, lead and zinc were also present at concentrations above the EILs.

We note that the EIL criteria are principally concerned with phytotoxicity (i.e. adverse effects on plant growth in established and proposed areas of landscaping).

We do not consider that these elevated EIL results will necessarily affect the proposed landscaping works for the following reasons:

- There are no known endangered ecologies species/communities currently existing at the site;
- The site in its current conditions does not show any signs of phytotoxic stress;
- The soil impacted by higher concentrations of arsenic and lead that may potentially leach are located in the area of the site that is to be excavated and disposed off-site as part of the proposed basement excavation; and
- We understand that the proposed new landscaping works will not include the use of any sensitive plant species.

9.3 <u>Waste Classification</u>

9.3.1 Classification of Fill Soil for Off-Site Disposal

The waste classification for the fill material is summarised in the following table:

Extent	Classification	Disposal Option
Fill material over the entire site	General Solid Waste (non-	The fill material classified under the
	putrescible) (GSW)	GAI can only be disposed of to a
And		NSW EPA licensed landfill capable
		of receive the waste stream. The
The natural soil in vicinity of		landfill should be contacted to
BH114 that has been		obtain the required approvals prior
impacted by arsenic and lead		to commencement of excavation.

Table	9-2:	Waste	Classification	of	Fill
i ubio	0 2.	•••••••••••••••••••••••••••••••••••••••	Clabolinoution	01	

Note:

1. Waste Classification Guidelines 2009

The fill material must be disposed of to a NSW EPA licensed facility. It is the responsibility of the receiving facility to ensure that the material meets their EPA license conditions. EIS accepts no liability whatsoever for illegal or inappropriate disposal of excavated material.

9.3.2 Classification of Natural Soil and Bedrock for Off-Site Disposal

The waste classification for the natural material is summarised in the following table:

Extent	Classification	Disposal Option
Natural silty clay	Virgin excavated	VENM is considered suitable for re-use on-site, or
soil and	natural material	alternatively, the information included in this report may
sandstone	(VENM)	be used to assess whether the material is suitable for
bedrock over the		beneficial reuse at another site as fill material.
entire site with		
the exception of		Alternatively, the natural material can be disposed of as
the natural		VENM to a facility licensed by the NSW EPA to receive
material in the		the waste stream.
vicinity of		
BH114		The VENM will have to be validated after removal of the
		fill material.

Table 9-3: Waste Classification of Natural Material

Material classed as VENM must not be mixed with any fill material (including building rubble) as this will invalidate the VENM classification. Where doubt exists about the difference between fill and VENM material an environmental/geotechnical engineer should be contacted.

9.4 Groundwater Contamination

Elevated concentrations of individual metals and Organochlorine pesticides (OCPs) were encountered in the groundwater sample obtained at the down-gradient section of the site (borehole BH101).

Analyte	GIL (µg/L)	No. of Samples Analysed	No. of Results above GIL	Maximum Concentration
Copper	1.4	2	1	2
Zinc	8	2	2	63
Aldrin	0.001	2	1	0.03
Dieldrin	0.01	2	1	0.04
Endosulfan	0.03	2	1	0.58

Table 9-4: Summary of Groundwater Results above the GILs

The elevated copper and zinc concentrations in the groundwater were not considered to be significant and are most likely a regional issue associated with surface water infiltration and leaking water infra-structure. This assumption in based on the condition of groundwater commonly encountered in urban areas and the presence of these metals in both the up-gradient and down-gradient wells.

The OCPs are considered to be a site specific contamination issue. This assumption is based on the understanding of past activities at the site, the absence of pesticides within the up-gradient well sample and the presence of trace levels of OCPs within the fill soil.

We would recommend some additional groundwater analysis prior to site works commencing to check whether the pesticide issue is a true reflection of the groundwater condition.

Based on the depth of groundwater encountered during the site investigation (ranging from 1.6m to 6.9m), groundwater is very likely to be intercepted during excavation works and dewatering will be required. Interim groundwater management will include (but not be limited to) the following:

- Council and other relevant approvals will be required prior to disposal of groundwater into the stormwater system; and
- Set-up of a site specific groundwater treatment and de-watering plant by a specialised contractor.

The interim management of groundwater contamination issues at the site can be facilitated via a Remedial Action Plan.

The long-term management of groundwater contamination issues at the site can be facilitated via an Environmental Management Plan.

9.5 Assessment of Risk

Table 9	9-5:	Risk	Matrix
---------	------	------	--------

Receptor	Potential Exposure	Risk	Recommendations
	Pathway of	Category	
	Contaminants		
Human	a). Direct contact with	Moderate	A remedial action plan (RAP) should be
receptors	contaminated soil can		prepared for the site. Following removal
	lead to dermal		of the contaminated soil the risk humans
	absorption or ingestion		coming into contact with contaminated soil
			would be very low. Site workers involved
	b). On-site usage and		in the proposed development should be
	consumption of		made aware of the contamination by
	contaminated		preparing a WHS plan outlining the PPE
	groundwater		and other procedures required for
			undertaking work. OC pesticides may
	d). Off-site usage and		migrate off-site with groundwater flow.
	consumption of		
	contaminated		The potential for human consumption of
	groundwater		groundwater is considered to be low. The

Receptor	Potential Exposure	Risk	Recommendations
	Pathway of	Category	
	Contaminants		
			groundwater bore search did not indicate the present of bores registered for domestic use in the immediate vicinity of the site. The surrounding area is connected to potable water and the risk of bore water being used for human consumption is very low.
Environmental receptors	a). Uptake of contaminants by sensitive plant species b). Uptake of contaminants by	Low to Moderate	The risk associated with sensitive environmental receptors coming into contact with contaminated soil will be very low following removal of the contaminated soil.
	c). Migration of contaminants dissolved in groundwater.		Further investigation is required to assess the risk associated with the pesticide contaminated groundwater.

10 CONCLUSION

EIS consider that the objectives of this ESA (detailed in **Section 1.2**) and the DQOs (detailed in **Section 3**) have generally been addressed.

Based on the scope of work undertaken, EIS consider that the site can be made suitable for the proposed development provided a remedial Action Plan (RAP) is prepared for the site to in order to outline the remediation and validation works.

10.1 Regulatory Requirement

The regulatory requirements applicable for the site are outlined in the following table:

Guideline	Applicability			
Duty to Report	The requirement to notify the NSW EPA regarding site contamination should			
Contamination	be assessed once the results of the additional investigation work have bee			
2008 ²⁰	reviewed and a remedial strategy has been selected.			
	Please note that in the event the recommendations for additional work and remediation are not undertaken, there may be justification to notify the EPA. EIS can be contacted for further advice regarding notification.			
POEO Act 1997	Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner.			

Table 10-1: Regulatory Requirement

²⁰*Guidelines on the Duty to Report Contamination*, NSW Government Legislation, 2008 (Duty to Report Contamination 2008)

11 LIMITATIONS

The sampling locations for the investigation have enabled an assessment to be made of the risk of the existence of significant, large quantities of contamination.

EIS adopts no responsibility whatsoever for any problems such as underground storage tanks, buried items or contaminated material that may be encountered between sampling locations at the site. Development activities at the site should be planned on this basis, and any unexpected problems that may be encountered between sampling locations should be immediately inspected by experienced environmental personnel. This should ensure that such problems are dealt with in an appropriate manner, with minimal disruption to the project timetable and budget.

The conclusions developed in this report are based on site conditions which existed at the time of the investigation and the scope of work outlined in the report. They are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, and visual observations of the site and immediate surrounds, together with the interpretation of available historical information and documents reviewed as described in this report.

The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined previously in this report.

Where information has been provided by third parties, EIS has not undertaken any verification process, except where specifically stated in the report.

EIS has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report.

Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes.

Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work.

EIS accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site.

EIS have not and will not make any determination regarding finances associated with the site.

Changes in the proposed or current site use may result in remediation or further investigation being required at the site.

During construction at the site, soil, fill and any unsuspected materials that are encountered should be monitored by qualified environmental and geotechnical engineers to confirm assumptions made on the basis of the limited investigation data, and possible changes in site level and other conditions since the investigation. Soil materials considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. Copyright in this report is the property of EIS. EIS has used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report.

LIST OF IN-TEXT TABLES:

Table 1-1: Guidelines	2
Table 3-1: Inputs into the Decision	5
Table 3-2: DQIs	7
Table 4-1: Site Identification Information	9
Table 5-1: SAC Adopted for this Investigation	11
Table 5-2: GAIs	13
Table 6-1: Soil Sample Preservation and Storage	16
Table 6-2: Groundwater Sample Preservation and Storage	17
Table 6-3: Laboratory Details	17
Table 6-4: Laboratory Analytical Schedule	18
Table 7-1: Summary of Subsurface Conditions	19
Table 7-2: Summary of Soil Laboratory Results	20
Table 7-3: Summary of Groundwater Laboratory Results	22
Table 8-1: Field QA/QC Samples	23
Table 8-2: Assessment of DQIs	23
Table 9-1: Summary of Soil Results above the health based SAC	26
Table 9-2: Waste Classification of Fill	27
Table 9-3: Waste Classification of Natural Material	28
Table 9-4: Summary of Groundwater Results above the GILs	28
Table 9-5: Risk Matrix	29
Table 10-1: Regulatory Requirement	31

IMPORTANT INFORMATION ABOUT THIS REPORT

These notes have been prepared by EIS to assist with the assessment and interpretation of this report.

The Report is Based on a Unique Set of Project Specific Factors:

This report has been prepared in response to specific project requirements as stated in the EIS proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- the proposed land use is altered;
- the defined subject site is increased or sub-divided;
- the proposed development details including size, configuration, location, orientation of the structures are modified;
- the proposed development levels are altered, eg addition of basement levels; or
- ownership of the site changes.

EIS/J&K will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by EIS to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (eg. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is Based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

Although information provided by a site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a

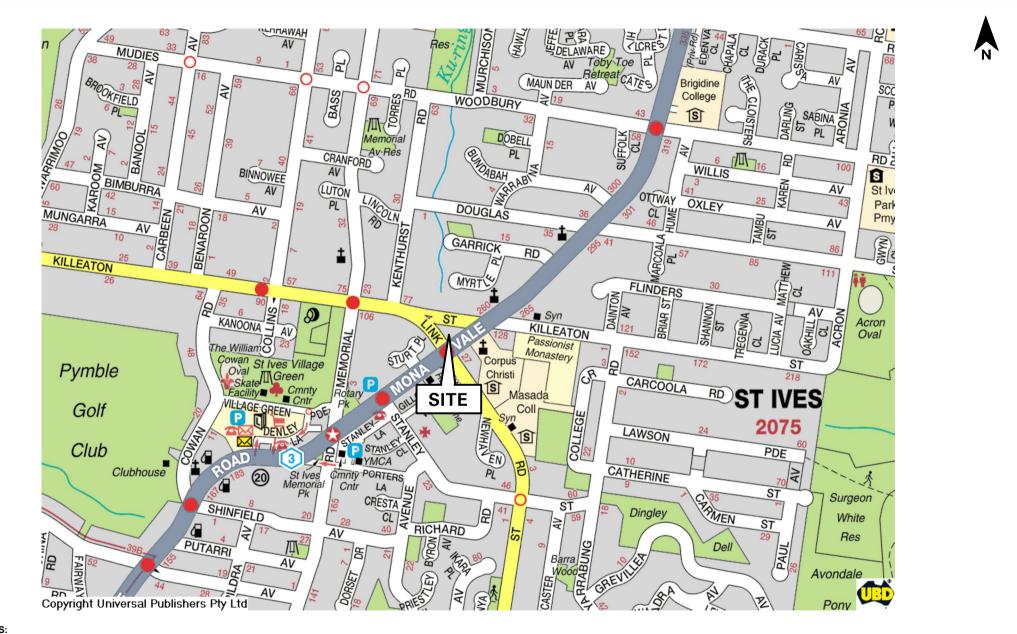
rigorous professional assessment may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Assessment Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problems, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the test of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.


To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

REPORT FIGURES

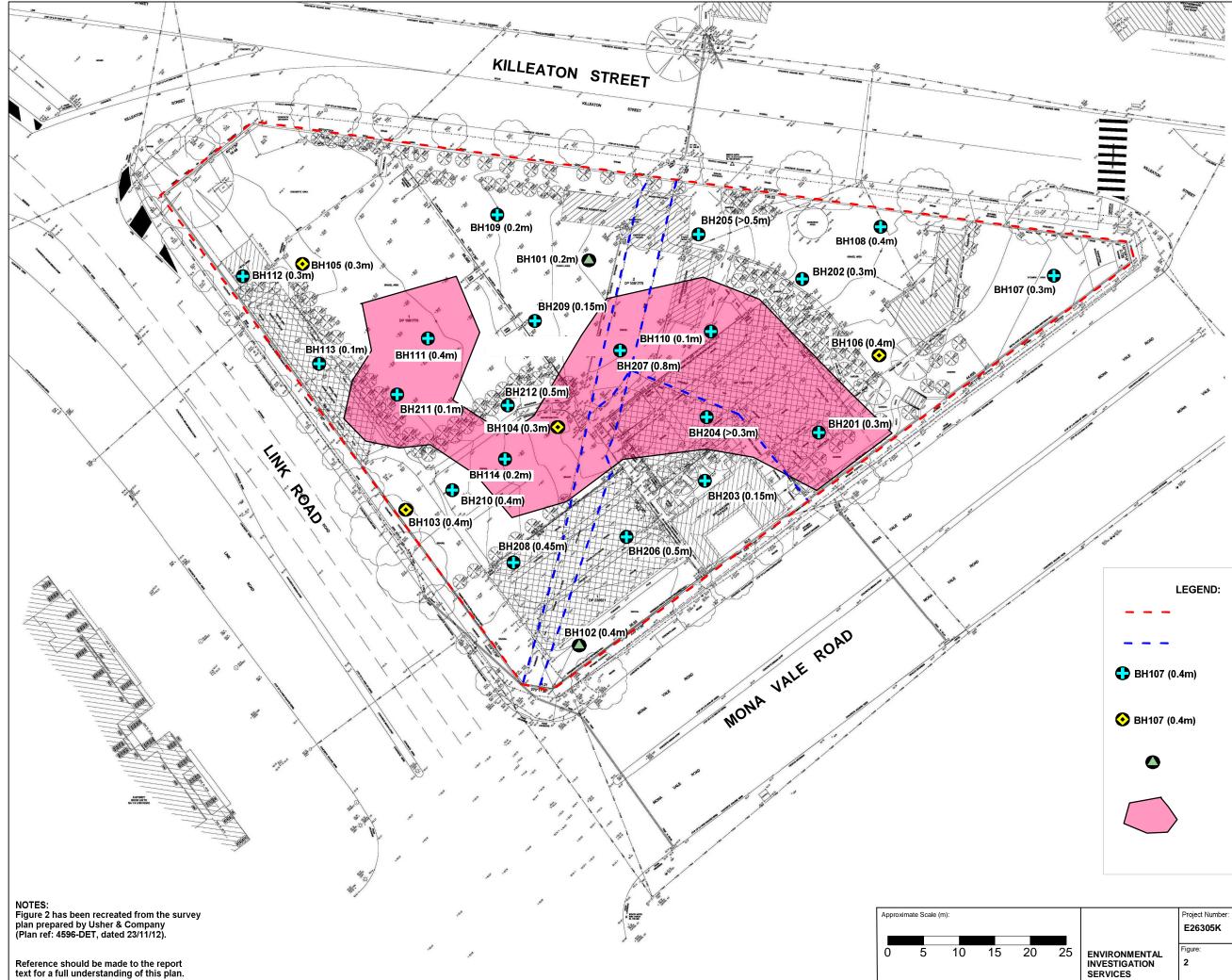

NOTES:

Figure 1 has been recreated from UBD on disc (version 5.0). Figure is not to scale.

UBD Map ref: 155 B11

Reference should be made to the report text for a full understanding of this plan.

EIS	Project Number: E26305K	Title: SITE LOCATION PLAN
ENVIRONMENTAL INVESTIGATION SERVICES	Figure: 1	Address: 238 MONA VALE ROAD ST IVES NSW 2075

LEGEND:	
	Approximate site boundary
	Stormwater
(0.4m) BH107 (0.4m)	EIS borehole location and depth of fill material
📀 BH107 (0.4m)	JK borehole location and depth of fill material
٥	Temporary gropundwater standpipe
	Approximate extent of contaminated soil

	Project Number:	Title:
	E26305K	SITE LAYOUT AND BOREHOLE LOCATION PLAN
ENVIRONMENTAL INVESTIGATION SERVICES	Figure: 2	Address: 238 MONA VALE ROAD ST IVES NSW 2075

TABLES WITH ANALYTICAL RESULTS

TABLE A SOIL LABORATORY RESULTS COMPARED TO HILs All data in me/ke unless stated otherwise

										Al	l data in mg/	kg unless st	tated other	wise								
						HEAVY I	METALS				PA	Hs			ORGANOCHLO	ORINE PESTIC	CIDES (OCPs)			OP PESTICIDES (OPPs)		
			Arsenic	Cadmium	Chromium VI ²	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P TEQ ³	НСВ	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirola	ab Services		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0,1	0.1	100
Site Assessme	ent Criteria (S	AC) ¹	500	150	500	30000	1200	120	1200	60000	400	4	15	400	500	10	90	600	10	340	1	Detected/Not Detecte
Sample Reference	Sample Depth	Sample Description																				
BH101	0.0-0.1	Fill	240	LPQL	18	84	140	LPQL	9	190	0.08	LPQL	LPQL	0.8	LPQL	LPQL	LPQL	1.4	LPQL	LPQL	LPQL	Not detected
BH102	0.0-0.1	Fill	38	LPQL	33	2	38	LPQL	5	7	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH103	0.0-0.2	Fill	360	LPQL	6	7	16	LPQL	4	90	LPQL	LPQL	LPQL	LPQL	LPQL	0.5	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH104	0.0-0.2	Fill	590	LPQL	10	24	2300	LPQL	4	72	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1	LPQL	LPQL	LPQL	Not detected
BH104	0.5-0.95	Silty Clay	20	LPQL	32	2	68	LPQL	2	4	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH105	0.0-0.2	Fill	18	LPQL	16	19	180	LPQL	3	27	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1	LPQL	LPQL	LPQL	Not detected
BH105	0.5-0.95	Silty Clay	14	LPQL	35	3	28	LPQL	2	5	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH106	0.0-0.2	Fill	47	LPQL	14	15	930	LPQL	6	71	LPQL	LPQL	LPQL	LPQL	LPQL	2.8	LPQL	0.2	LPQL	LPQL	LPQL	Not detected
BH107	0.1-0.3	Fill	58	LPQL	24	14	510	LPQL	22	660	0.05	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH109	0.0-0.2	Fill	80	LPQL	19	11	110	LPQL	6	71	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	LPQL	Not detected
BH110	0.0-0.1	Fill	260	LPQL	20	22	110	LPQL	7	53	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH111	0.0-0.5	Fill	700	LPQL	20	230	100	0.2	5	250	0.27	LPQL	LPQL	1.5	LPQL	LPQL	LPQL	0.7	LPQL	LPQL	LPQL	Not detected
BH111	0.05-0.1	Fill	570	LPQL	21	280	450	LPQL	8	190	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH111	0.4-0.6	Silty Clay	400	LPQL	18	170	45	LPQL	3	57	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	LPQL	LPQL	Not detected
BH112	0.0-0.05	Fill	4	LPQL	39	LPQL	13	LPQL	3	3	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	1.2	LPQL	NA	NA	NA
BH114	0.0-0.1	Fill	71	0.5	12	110	140	LPQL	12	300	2.07	LPQL	0.6	LPQL	LPQL	0.2	LPQL	1	LPQL	LPQL	LPQL	Not detected
BH114	0.2-0.4	Silty Clay / possibly fill	570	LPQL	20	160	1100	0.1	6	110	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	NA	LPQL	LPQL	Not detected
BH201	0.1-0.3	Fill	1600	LPQL	33	1	18	LPQL	3	58	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH202	0-0.2	Fill	110	NA	NA	NA	880	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	0.1	LPQL	NA	NA	NA
BH203	0-0.15	Fill	30	NA	NA	NA	110	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH203	0.2-0.4	Silty Clay	10	NA	NA	NA	24	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH204	0.1-0.3	Fill	1200	NA	NA	NA	49	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH205	0-0.2	Fill	10	NA	NA	NA	280	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH206	0-0.15	Fill	130	NA	NA	NA	94	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH206	0.6-0.8	Silty Clay	4	NA	NA	NA	37	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH207	0.4-0.6	Fill	170	NA	NA	NA	1600	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH207	0.8-1.0	Silty Clay	60	NA	NA	NA	36	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH208	0-0.15	Fill	150	NA	NA	NA	270	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH208	0.5-0.7	Silty Clay	LPQL	NA	NA	NA	98	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH209	0-0.15	Fill	120	NA	NA	NA	180	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	0.3	LPQL	NA	NA	NA
BH209	0.2-0.4	Silty Clay	20	NA	NA	NA	13	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH210	0-0.1	Fill	220	NA	NA	NA	340	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	0.1	LPQL	1	LPQL	NA	NA	NA
BH210	0.5-0.7	Fill	8	NA	NA	NA	28	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH211	0-0.1	Fill	370	NA	NA	NA	2000	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	0.1	LPQL	NA	NA	NA
BH211	0.2-0.4	Silty Clay	4	NA	NA	NA	20	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
BH212	0.2-0.4	Fill	LPQL	NA	NA	NA	79	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	3	LPQL	NA	NA	NA
BH212	0.6-0.8	Silty Clay	79	NA	NA	NA	9	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA	NA	NA
																					NA	
Total Numb	er of Sample	s	37	18	18	18	37	18	18	18	18	18	33	33	33	33	33	34	33	13	14	14
Maximum V	/alue		1600	0.5	39	280	2300	0.2	22	660	2.07	LPQL	0.6	1.5	LPQL	2.8	LPQL	3	LPQL	LPQL	LPQL	NC

Explanation:

1 - Site Assessment Criteria (SAC): NEPM 2013, HIL-B: 'Residential with minimal opportunities for soil access; including dwellings with fully/permanently paved yards like high-rise buildings'

2 - The results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.

3 - B(a)P TEQ - Benzo(a)pyrene Toxicity Equivalence Quotient has been calculated based on 8 carcinogenic PAHs and their Toxic Equivalence Factors (TEFs) outlined in NEPM 2013

Concentration above the SAC

Abbreviations:

 PAHs: Polycyclic Aromatic Hydrocarbons
 UCL: Upper Level Confidence Limit on Mean Value

 B(a)P: Benzo(a)pyrene
 HILs: Health Investigation Levels

 PQL: Practical Quantitation Limit
 NA: Not Analysed

 LPQL: Less than PQL
 NC: Not Calculated

 OPP: Organophosphorus Pesticides
 NSL: No Set Limit

 OCP: Organochlorine Pesticides
 SAC: Site Assessment Criteria

 PCBs: Polychlorinated Biphenyls
 NEPM: National Environmental Protection Measure

8H102 0 8H103 0 8H104 0	Category ¹ Sample Depth 0.0-0.1 0.0-0.1 0.0-0.2 0.0-0.2 0.5-0.95	Sample Description Fill Fill Fill	Depth Category Om to < 1m Om to < 1m	Soil Category	C ₆ -C ₁₀ (F1) 25	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID ²		
ISL Land Use Crosses Complete Sample Reference Crosses Complete Co	Category ¹ Sample Depth 0.0-0.1 0.0-0.1 0.0-0.2 0.0-0.2 0.5-0.95	Fill Fill	Category Om to < 1m	Soil Category	25	50								
Sample Reference H101 GH102 GH103 GH104	Sample Depth 0.0-0.1 0.0-0.1 0.0-0.2 0.0-0.2 0.5-0.95	Fill Fill	Category Om to < 1m	Soil Category										
Sample Reference H101 GH102 GH103 GH104	Sample Depth 0.0-0.1 0.0-0.1 0.0-0.2 0.0-0.2 0.5-0.95	Fill Fill	Category Om to < 1m	Soil Category			HIG	H DENSITY RESIDE	NTIAL		•			
8H102 0 8H103 0 8H104 0	0.0-0.1 0.0-0.2 0.0-0.2 0.5-0.95	Fill Fill												
00000000000000000000000000000000000000	0.0-0.2 0.0-0.2 0.5-0.95	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
6H104 0	0.0-0.2 0.5-0.95			Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.5-0.95		0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
H104 0		Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
		Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
H105 0	0.0-0.2	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.5-0.95	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.0-0.2	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.1-0.3	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.0-0.2	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.0-0.1	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.0-0.5	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.05-0.1	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.4-0.6	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.0-0.05	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.0-0.1	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.2-0.4	Silty Clay / possibly fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0.1-0.3	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0		
	0-0.2	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0-0.15	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0.2-0.4	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0		
	0.1-0.3	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0-0.2	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0-0.15	Fill	Om to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0.6-0.8	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0		
	0.4-0.6	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0.4-0.0	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0		
	0-0.15	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0.5-0.7	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0		
	0-0.15	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0.2-0.4	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0		
	0-0.1	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0.5-0.7	Fill	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0		
	0-0.1	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0.2-0.4	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0		
	0.2-0.4	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA	0		
	0.6-0.8	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA	0		
Total Number Maximum Valu					18 LPQL	18 LPQL	18 LPQL	18 LPQL	18 LPQL	18 LPQL	18 LPQL	37 0		

Explanation: 1 - Site Assessment Criteria (SAC): NEPM 2013 2 - Field PID values obtained during the investigation Values shown in blue are for the pre-2013 hydrocarbon fractions Concentration above the SAC VALUE The guideline corresponding to the elevated value is highlighted in grey in the Site Assessment Criteria Table below

 Abbreviations:

 UCL: Upper Level Confidence Limit on Mean Value
 NC: Not Calculated

 HSLs: Health Screening Levels
 NL: Not Limiting

 NAL Not Analysed
 na: Not Analysed

PQL: Practical Quantitation Limit LPQL: Less than PQL SAC: Site Assessment Criteria

UCL: Upper Level Confidence Limit on Mean Value HILs: Health Investigation Levels NEPM: National Environmental Protection Measure

SITE ASSESSMENT CRITERIA

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
PQL - Envirola	b Services				25	50	0.2	0.5	1	3	1
HSL Land Use	Category ¹						HIG	H DENSITY RESIDEN	ITIAL		
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category							
BH101	0.0-0.1	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH102	0.0-0.1	Fill	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH103	0.0-0.2	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH104	0.0-0.2	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH104	0.5-0.95	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH105	0.0-0.2	Fill	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH105	0.5-0.95	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH106	0.0-0.2	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH107	0.1-0.3	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH109	0.0-0.2	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH110	0.0-0.1	Fill	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH111	0.0-0.5	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH111	0.05-0.1	Fill	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH111	0.4-0.6	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH112	0.0-0.05	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH114	0.0-0.1	Fill	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH114	0.2-0.4	Silty Clay / possibly fill	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH201	0.1-0.3	Fill	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH202	0-0.2	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH203	0-0.15	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH203	0.2-0.4	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH204	0.1-0.3	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH205	0-0.2	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH206	0-0.15	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH206	0.6-0.8	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH207	0.4-0.6	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH207	0.8-1.0	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH208	0-0.15	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH208	0.5-0.7	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH209	0-0.15	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH209	0.2-0.4	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH210	0-0.1	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH210	0.5-0.7	Fill	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH211	0-0.1	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH211	0.2-0.4	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA
BH212	0.2-0.4	Fill	0m to < 1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH212	0.6-0.8	Silty Clay	0m to < 1m	Clay	NA	NA	NA	NA	NA	NA	NA

Г

												SOIL LAE		ESULTS COMPA	TABLE C RED TO WASTE unless stated ot	CLASSIFICATION GU herwise	IIDELINES (2009	9)										
							HEAVY	METALS				P/	٨Hs		OC/OP	PESTICIDES		Total			TRH				BTEX CON	IPOUNDS		
				Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total	B(a)P	Total	Chloropyrifos	Total moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C15-C28	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
						cinoman	copper			mener		PAHs		Endosulfans		harmful ²	Scheduled ³						C ₁₀ -C ₃₆			benzene	Xylenes	
PQL - Envirol				4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	250	0.2	0.5	1	3	100
General Solid				100	20	100	NSL	100	4	40	NSL	NSL	0.8	60	4	NSL	NSL	NSL	NSL		NSL		NSL	10	288	600	1000	-
General Solid				500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10000	18 40	518	1080	1800	-
Restricted So Restricted So				400 2000	80 400	400 7600	NSL NSL	400 6000	16 200	160 4200	NSL NSL	NSL 800	3.2 23	240 432	16 30	NSL 1000	NSL 50	NSL 50	NSL 2600		NSL NSL		NSL 40000	40 72	1152 2073	2400 4320	4000 7200	-
				2000	400	7000	INSL	0000	200	4200	INSL	800	25	432	30	1000	30	30	2000		INSL		40000	72	2073	4320	7200	-
Sample Reference	Sam Dep		Sample Description																									
BH101	0.0-0.1	L	Fill	240	LPQL	18	84	140	LPQL	9	190	0.08	0.08	0.8	LPQL	LPQL	1.4	LPQL	LPQL	LPQL	LPQL	150	150	LPQL	LPQL	LPQL	LPQL	Not detected
BH102	0.0-0.1	L	Fill	38	LPQL	33	2	38	LPQL	5	7	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH103	0.0-0.2	2	Fill	360	LPQL	6	7	16	LPQL	4	90	LPQL	LPQL	LPQL	LPQL	LPQL	0.5	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH104	0.0-0.2		Fill	590	LPQL	10	24	2300	LPQL	4	72	LPQL	LPQL	LPQL	LPQL	LPQL	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH104	0.5-0.95		Silty Clay	20	LPQL	32	2	68	LPQL	2	4	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH105	0.0-0.2		Fill	18	LPQL	16	19	180	LPQL	3	27	0.06	0.06	LPQL	LPQL	LPQL	0.3	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH105	0.5-0.95		Silty Clay	14	LPQL	35	3	28	LPQL	2	5	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH106	0.0-0.2		Fill	47	LPQL	14	15	930	LPQL	6	71	LPQL	LPQL	LPQL	LPQL	LPQL	3.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH107	0.1-0.3		Fill	58	LPQL	24	14	510	LPQL	22	660	0.05	0.05	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH109	0.0-0.2		Fill	80	LPQL	19	11	110	LPQL	6	71	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH110 BH111	0.0-0.1		Fill	260 700	LPQL	20	22 230	110 100	LPQL	7	53 250	LPQL 0.27	LPQL 0.07	LPQL 1.5	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH111 BH111	0.05-0.1		Fill	570	LPQL LPQL	20 21	230	450	0.2 LPQL	8	190	LPQL	LPQL	LPQL	LPQL LPQL	LPQL	0.8 LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	Not detected Not detected
BH111 BH111	0.4-0.6		Silty Clay	400	LPQL	18	170	45	LPQL	3	57	LPQL	LPQL	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH112	0.0-0.05		Fill	400	LPQL	39	LPQL	13	LPQL	3	3	LPQL	LPQL	LPQL	LPQL	LPQL	1.8	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH114	0.0-0.1		Fill	71	0.5	12	110	140	LPQL	12	300	2.07	0.07	LPQL	LPQL	LPQL	1.2	LPQL	LPQL	LPQL	310	490	800	LPQL	LPQL	LPQL	LPQL	Not detected
BH114	0.2-0.4		Silty Clay / possibly fill	570	LPQL	20	160	1100	0.1	6	110	LPQL	LPQL	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not detected
BH201	0.1-0.3		Fill	1600	LPQL	33	1	18	LPQL	3	58	LPQL	LPQL	LPQL	NA	NA	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH202	0-0.2		Fill	110	NA	NA	NA	880	NA	NA	NA	NA	NA	LPQL	NA	NA	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH203	0-0.15		Fill	30	NA	NA	NA	110	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH203	0.2-0.4	L I	Silty Clay	10	NA	NA	NA	24	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH204	0.1-0.3	3	Fill	1200	NA	NA	NA	49	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH205	0-0.2		Fill	10	NA	NA	NA	280	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH206	0-0.15		Fill	130	NA	NA	NA	94	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH206	0.6-0.8	3	Silty Clay	4	NA	NA	NA	37	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH207	0.4-0.6	5	Fill	170	NA	NA	NA	1600	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH207	0.8-1.0		Silty Clay	60	NA	NA	NA	36	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH208	0-0.15		Fill	150	NA	NA	NA	270	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH208	0.5-0.7		Silty Clay	LPQL	NA	NA	NA	98	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH209	0-0.15		Fill	120	NA	NA	NA	180	NA	NA	NA	NA	NA	LPQL	NA	NA	0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH209	0.2-0.4		Silty Clay	20	NA	NA	NA	13	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH210	0-0.1		Fill	220	NA	NA	NA	340	NA	NA	NA	NA	NA	LPQL	NA	NA	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH210 BH211	0.5-0.7		Fill	8	NA	NA	NA	28 2000	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA
BH211 BH211	0-0.1		Silty Clay	370 4	NA NA	NA	NA	2000	NA NA	NA	NA	NA	NA	LPQL LPQL	NA	NA	0.1 LPQL	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA
BH211 BH212	0.2-0.4		Fill	4 LPQL	NA	NA	NA	79	NA	NA	NA	NA	NA	LPQL	NA	NA	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH212 BH212	0.6-0.8		Silty Clay	79	NA	NA	NA	9	NA	NA	NA	NA	NA	LPQL	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2.5 0.0		,,									1																
Total Numb	per of samp	nples		37	18	18	18	37	18	18	18	18	18	33	13	13	33	14	18	18	18	18	18	18	18	18	18	0
Maximum	Value			1600	0.5	39	280	2300	0.2	22	660	2.07	0.08	1.5	LPQL	LPQL	3.2	LPQL	LPQL	LPQL	310	490	800	LPQL	LPQL	LPQL	LPQL	NC

Explanation:

¹ - NSW DECCW Waste Classification Guidelines (2009)

² - Assessment of Total moderately harmful pesticides includes: Dimethoate, Fenitrothion, Ethion

- Assessment of Total scheduled pesticides include: alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2

Abbreviations: PAHs: Polycyclic Aromatic Hydrocarbons B(a)P: Benzo(a)pyrene PQL: Practical Quantitation Limit LPQL: Less than PQL PID: Photoionisation Detector PCBs: Polychlorinated Biphenyls BTEX: Monocyclic Aromatic Hydrocarbons

UCL: Upper Level Confidence Limit on Mean Value ALPQL: All values less than PQL NA: Not Analysed NC: Not Calculated NSL: No Set Limit SAC: Site Assessment Criteria TRH: Total Recoverable Hydrocarbons CT: Contaminant Threshold SCC: Specific Contaminant Concentration HILs: Health Investigation Levels NEPM: National Environmental Protection Measure

		TABLE D L LABORATORY TCLP RESI ta in mg/L unless stated o		
			Arsenic	Lead
PQL - Envirolal	b Services		0.05	0.03
	al Solid Waste	1	5	5
	cted Solid Wast		20	20
TCLP3 - Hazaro			>20	>20
Sample Reference	Sample Depth	Sample Description		
BH101	0.0-0.1	Fill	0.3	0.07
BH103	0.0-0.2	Fill	0.2	NA
BH104	0.0-0.2	Fill	1	2.8
BH105	0.0-0.2	Fill	NA	0.2
BH106	0.0-0.2	Fill	NA	1.6
BH107	0.1-0.3	Fill	NA	0.7
BH109	0.0-0.2	Fill	0.7	0.03
BH110	0.0-0.1	Fill	1.1	NA
BH111	0.0-0.5	Fill	0.4	0.2
BH111	0.05-0.1	Fill	0.6	NA
BH112	0.0-0.05	Fill	NA	0.05
BH114	0.0-0.1	Fill	0.4	0.6
BH114	0.2-0.4	Fill	1.9	NA
BH201	0.1-0.3	Fill	NA	0.3
BH202	0-0.2	Fill	0.3	0.3
BH204	0.1-0.3	Fill	NA	1.7
BH207	0.4-0.6	Fill	1.7	NA
BH210	0-0.1	Fill	NA	NA
BH211	0-0.1	Fill	3.8	0.4
Total Numbe	er of samples		12	13
Maximum V	alue		3.8	2.8
		fication Guidelines (2009)		
General Solid			VALUE	
Restricted Soli			VALUE	
Hazardous Wa	ste	l	VALUE	
LPQL: Less tha B(a)P: Benzo(a NC: Not Calcul	Quantitation Li n PQL I)pyrene ated	mit		
NA: Not Analy		Looching Procedure		
ICLP: Toxicity	Characteristics	Leaching Procedure		

TABLE E SOIL LABORATORY ASLP RESULTS All data in mg/L unless stated otherwise

			Arsenic	Lead
PQL - Enviro	lab Services		1	1
Sample Reference	Sample Depth	Sample Description		
BH201	0.1-0.3	Fill	1.6	NA
BH202	0-0.2	Fill	0.23	0.4
BH204	0.1-0.3	Fill	9.3	NA
BH207	0.4-0.6	Fill	NA	4.2
BH210	0-0.1	Fill	0.3	0.15
BH211	0-0.1	Fill	0.41	0.83
Total Numb	per of sample	es .	5	4
Maximum V	/alue		9.3	4.2

Abbreviations:

PQL: Practical Quantitation Limit

LPQL: Less than PQL

B(a)P: Benzo(a)pyrene

NC: Not Calculated

NA: Not Analysed

TCLP: Toxicity Characteristics Leaching Procedure

									SOI			: IPARED TO EILs stated otherwis											
Land Use Category 1												URBA	N RESIDENTIAL A	ND PUBLIC OP	PEN SPACE								
cand use category									AGED HEAV	Y METALS-EILs			EI		1				ESLs				
				pН	CEC (cmol _c /kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C10-C16 (F2)	>C16-C34 (F3)	>C34-C40 (F4)	Benzene	Toluene	Ethylbenzene	e Total Xylenes	B(a)P
PQL - Envirolab Servi	ces			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	3	0.05
Ambient Background	Concentratio	on (ABC) ²			-	-	NSL	13	28	NSL	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH101	0.0-0.1	Fill	Coarse	NA	NA	NA	240	18	84	140	9	190	LPQL	0.2	LPQL	LPQL	160	LPQL	LPQL	LPQL	LPQL	LPQL	0.08
BH102	0.0-0.1	Fill	Fine	NA	NA	NA	38	33	2	38	5	7	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
	0.0-0.2	Fill	Coarse	NA	NA	NA	360	6	7	16	4	90	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
	0.0-0.2	Fill	Coarse	NA	NA	NA	590	10	24	2300	4	72	LPQL	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
	0.5-0.95	Silty Clay	Fine	NA	NA	NA	20	32	2	68	2	4	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
	0.0-0.2	Fill	Fine	NA	NA	NA	18	16 35	19	180 28	2	27	LPQL	0.1 NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL LPQL	LPQL	LPQL	0.06 LPQL
	0.0-0.2	Silty Clay Fill	Fine Coarse	NA	NA	NA	14	35	3	930	6	71	LPQL	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
	0.1-0.3	Fill	Coarse	NA	NA	NA	58	24	14	510	22	660	LPOL	LPQL	LPQL	LPQL	LPOL	LPQL	LPQL	LPQL	LPQL	LPQL	0.05
	0.0-0.2	Fill	Coarse	NA	NA	NA	80	19	11	110	6	71	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH110	0.0-0.1	Fill	Fine	NA	NA	NA	260	20	22	110	7	53	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.07
BH111	0.0-0.5	Fill	Coarse	NA	NA	NA	700	20	230	100	5	250	LPQL	0.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
BH111	0.05-0.1	Fill	Coarse	NA	NA	NA	570	21	280	450	8	190	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
	0.4-0.6	Silty Clay	Fine	NA	NA	NA	400	18	170	45	3	57	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
	0.0-0.05	Fill	Coarse	NA	NA	NA	4	39	LPQL	13	3	3	LPQL	0.6	LPQL	LPQL	660	230	LPQL	LPQL	LPQL	LPQL	0.07
	0.0-0.1	Fill	Coarse	NA	NA	NA	71	12	110	140	12	300	LPQL	0.4	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
	0.2-0.4	Silty Clay / possibly fill Fill	Fine Coarse	NA NA	NA	NA	570 1600	20 33	160 1	1100	6	110 58	LPQL	NA LPQL	LPQL NA	LPQL	LPQL NA	LPQL	LPQL LPQL	LPQL	LPQL	LPQL	LPQL NA
	0-0.2	Fill	Coarse	NA	NA	NA	110	NA	NA	880	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.15	Fill	Coarse	NA	NA	NA	30	NA	NA	110	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH203	0.2-0.4	Silty Clay	Fine	NA	NA	NA	10	NA	NA	24	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH204	0.1-0.3	Fill	Coarse	NA	NA	NA	1200	NA	NA	49	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH205	0-0.2	Fill	Coarse	NA	NA	NA	10	NA	NA	280	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.15	Fill	Coarse	NA	NA	NA	130	NA	NA	94	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.6-0.8	Silty Clay	Fine	NA	NA	NA	4	NA	NA	37	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.4-0.6	Fill	Fine	NA	NA	NA	170	NA	NA	1600	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.8-1.0	Silty Clay	Fine	NA	NA	NA	60	NA	NA	36	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.15	Fill Silty Clay	Coarse Fine	NA	NA	NA	150 LPQL	NA NA	NA	270 98	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0-0.15	Fill	Coarse	NA	NA	NA	120	NA	NA	180	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.2-0.4	Silty Clay	Fine	NA	NA	NA	20	NA	NA	13	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH210	0-0.1	Fill	Coarse	NA	NA	NA	220	NA	NA	340	NA	NA	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH210	0.5-0.7	Fill	Fine	NA	NA	NA	8	NA	NA	28	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH211	0-0.1	Fill	Coarse	NA	NA	NA	370	NA	NA	2000	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.2-0.4	Silty Clay	Fine	NA	NA	NA	4	NA	NA	20	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.2-0.4	Fill	Coarse	NA	NA	NA	LPQL	NA	NA	79	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH212	0.6-0.8	Silty Clay	Fine	NA	NA	NA	79	NA	NA	9	NA	NA	NA	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Number of S	amples			0	0	0	37	18	18	37	18	18	18	33	17	17	17	17	18	18	18	18	17
Maximum Value				NC	NC	NC	1600	39	280	2300	22	660	LPQL	0.6	LPQL	LPQL	660	230	LPQL	LPQL	LPQL	LPQL	0.08

Explanation: 1 - Site Assessment Criteria (SAC): NEPM 2013 2 - ABC Values for selected metals has been ado d in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with high traffic have been quoted)

Concentration above the SAC VALUE To guideline corresponding to the elevated value is highlighted in grey in the ElL and ESL Assessment Criteria Table below

UCL: Upper Level Confidence Limit on Mean Value	LPQL: Less than PQL	NC: Not Calculated
ESLs: Ecological Screening Levels	SAC: Site Assessment Criteria	NSL: No Set Limit
NA: Not Analysed	NEPM: National Environmental Protection Measure	ABC: Ambient Background Concentration
	ESLs: Ecological Screening Levels	ESLs: Ecological Screening Levels SAC: Site Assessment Criteria

EIL AND ESL ASSESSMENT CRITERIA

Land Use Category 1												URBA	RESIDENTIAL A	ND PUBLIC OP	EN SPACE								
						Clay Content			AGED HEAV	Y METALS-EILs			EII	s					ESLs				
				pН	CEC (cmol _c /kg)	(% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
QL - Envirolab Ser	vices			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	3	0.05
Ambient Backgrour	nd Concentrati	ion (ABC) 2		-	-	-	NSL	13	28	NSL	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
3H101	0.0-0.1	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H102	0.0-0.1	Fill	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
3H103	0.0-0.2	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H104	0.0-0.2	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H104	0.5-0.95	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	-	180	120	1300	5600	60	105	125	45	0.7
3H105	0.0-0.2	Fill	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
3H105	0.5-0.95	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710		180	120	1300	5600	60	105	125	45	0.7
3H106	0.0-0.2	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H107	0.1-0.3	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H109	0.0-0.2	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H110	0.0-0.1	Fill	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
3H111	0.0-0.5	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H111	0.05-0.1	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H111	0.4-0.6	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	-	180	120	1300	5600	60	105	125	45	0.7
3H112	0.0-0.05	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H114	0.0-0.1	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
3H114	0.2-0.4	Silty Clay / possibly fill	Fine	NA	NA	NA	100	203	88	1100	35	192	710		180	120	1300	5600	60	105	125	45	0.7
3H201	0.1-0.3	Fill	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180				-	50	85	70	105	-
3H202	0-0.2	Fill	Coarse	NA	NA	NA	100			1100				180				-					-
3H203	0-0.15	Fill	Coarse	NA	NA	NA	100		-	1100				180			-						-
3H203	0.2-0.4	Silty Clay	Fine	NA	NA	NA	100		-	1100				180			-						-
3H2O4	0.1-0.3	Fill	Coarse	NA	NA	NA	100		-	1100				180		-		-					
3H205	0-0.2	Fill	Coarse	NA	NA	NA	100		-	1100				180		-		-					
3H206	0-0.15	Fill	Coarse	NA	NA	NA	100		-	1100				180		-		-					
3H206	0.6-0.8	Silty Clay	Fine	NA	NA	NA	100		-	1100				180		-		-					-
3H207	0.4-0.6	Fill	Fine	NA	NA	NA	100			1100				180									-
3H207	0.8-1.0	Silty Clay	Fine	NA	NA	NA	100		-	1100				180		-		-					
3H208	0-0.15	Fill	Coarse	NA	NA	NA	100		-	1100				180		-	-	-					-
3H208	0.5-0.7	Silty Clay	Fine	NA	NA	NA	100		-	1100				180		-	-	-					-
3H209	0-0.15	Fill	Coarse	NA	NA	NA	100		-	1100				180		-	-	-					-
3H209	0.2-0.4	Silty Clay	Fine	NA	NA	NA	100		-	1100				180		-	-	-					-
3H210	0-0.1	Fill	Coarse	NA	NA	NA	100		-	1100				180		-	-	-					-
3H210	0.5-0.7	Fill	Fine	NA	NA	NA	100		-	1100				180			-						-
3H211	0-0.1	Fill	Coarse	NA	NA	NA	100		-	1100				180			-						-
3H211	0.2-0.4	Silty Clay	Fine	NA	NA	NA	100		-	1100				180			-						-
3H212	0.2-0.4	Fill	Coarse	NA	NA	NA	100		-	1100				180			-	-					-
3H212	0.6-0.8	Silty Clay	Fine	NA	NA	NA	100			1100				180									-

EIS

B(a)P
0.05
NSL

PQL
PQL
PQL
0.06
PQL
PQL
0.05
PQL
0.07
PQL
PQL
PQL
0.07
PQL
PQL
NA

B(a)P
0.05
NSL
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
-
-
-
-
-
-
-
-
-
-
-

SUI		TABLE G JNDAWATER LAB μg/L unless state	ORATORY RESULT d otherwise.	S	
	PQL	GIL - ANZECC	GIL - US EPA ⁵	San	nples
	Envirolab Services	2000 ¹ Fresh Waters		MW101	MW102
Inorganic Compounds and Parameter					
pH	0.1	6.5 - 8.5'	-	5.8	5.7
Electrical Conductivity (µS/cm) Hardness (mgCaCo3/L)	1	nsl	-	230 42	180 20
Hardness (mgcacos/L)	3	1151	-	42	20
Arsenic (As III)	1	24	-	3	LPQL
Cadmium	0.1	0.2	-	0.2	LPQL
Chromium (III)	1	3.3ª	-	3	1
Copper	1	1.4	-	2	1
Lead	1	3.4	-	LPQL	LPQL
Mercury (inorganic)	0.05	0.6	-	LPQL	LPQL
Nickel	1	11	-	3	1
Zinc	1	8	-	63	35
Petroleum Hydrocarbons (TPH Comp		г. .			
Hydrocarbons C6-C9	10	nsl	-	LPQL	LPQL
Hydrocarbons C10-C14	50	nsl	-	LPQL	LPQL
Hydrocarbons C15-C28 Hydrocarbons C29-C36	100	nsi	-	LPQL	LPQL
Total Hydrocarbons C10-C36	-	600 ^b	_	LPQL	LPOL
Monocyclic Aromatic Hydrocarbons (BTEX Compound				
Benzene	1	950ª	-	LPQL	LPQL
Toluene	1	180ª	-	LPQL	LPQL
Ethylbenzene	1	80ª	-	LPQL	LPQL
m+p-xylene	2	75 ^m	-	LPQL	LPQL
o-xylene	1	350 ^ª	-	LPQL	LPQL
Total xylenes	3	nsl	-	LPQL	LPQL
Polycyclic Aromatic Hydrocarbons (P	AHs)*	-			
Naphthalene	1	16ª	nsl	LPQL	LPQL
Acenaphthylene	1	nsl	nsl	LPQL	LPQL
Acenaphthene	1	nsl	400	LPQL	LPQL
Fluorene	1	nsl	220	LPQL	LPQL
Phenanthrene	1	0.6 ^c	nsl	LPQL	LPQL
Anthracene	1	0.01°	nsl	LPQL	LPQL
Fluoranthene	1	1°	nsl	LPQL	LPQL
	1	nsl	87	LPQL	LPQL
Benzo(a)anthracene Chrysene	1	nsl	0.029	LPQL	LPQL
Benzo(b,k)fluoranthene	2	nsl	0.029 ^r	LPQL	LPQL
Benzo(a)pyrene	1	0.1°	nsl	LPQL	LPQL
Indeno(1,2,3-c,d)pyrene	1	nsl	0.029	LPOL	LPQL
Dibenzo(a,h)anthracene	1	nsl	0.0029	LPQL	LPQL
Benzo(g,h,i)perylene	1	nsl	nsl	LPQL	LPQL
Total PAHs	-	nsl	nsl	LPQL	LPQL
Organochlorine Pesticides (OCPs)**		•			
Aldrin	0.01	0.001 ^a	-	0.03	LPQL
Chlordane	0.01	0.03 ^c	-	LPQL	LPQL
DDE	0.01	0.03ª	nsl	LPQL	LPQL
DDT	0.01	0.006 ^c	-	LPQL	LPQL
Dieldrin	0.01	0.01ª	-	0.04	LPQL
Endosulfan	0.01	0.03°	-	0.58	LPQL
Endrin	0.01	0.01°	11	LPQL	LPQL
Heptachlor	0.01	0.01°	-	LPQL	LPQL
Methoxychlor	0.01	0.005 ^c	-	LPQL	LPQL
Organophosphate Pesticides (OPPs)	0.01	0 1 E ^a			I DOI
Dimethoate Diazinon	0.01	0.15 ^a 0.01 ^a	-	LPQL	LPQL
Ronnel (fenchlorphos)	0.01	nsl	1800	LPQL	LPQL
Fenitrothion	0.01	0.2ª	-	LPQL	LPQL
Chlorpyriphos	0.01	0.01	-	LPQL	LPQL
Bromophos-ethyl	0.01	nsl	-	LPQL	LPQL
Ethion	0.01	nsl	-	LPQL	LPQL
Polychlorinated Biphenyls (PCBs)*					
Aroclor 1016	0.1	0.001ª	0.96	LPQL	LPQL
Aroclor 1221	0.1	1 ^a	0.0068	LPQL	LPQL
Aroclor 1232	0.1	0.3 ^a	0.0068	LPQL	LPQL
Aroclor 1242	0.1	0.3ª	0.034	LPQL	LPQL
Aroclor 1248	0.1	0.03ª	0.034	LPQL	LPQL
Aroclor 1254	0.1	0.01 ^a	0.034	LPQL	LPQL
Aroclor 1260	0.1	nsl	0.034	LPQL	LPQL
Total PCBs	0.1	nsl	nsl	LPQL	LPQL

EXPLANATION:

1 - ANZECC Australian Water Quality Guidelines for Fresh Waters, 2000 - Trigger Values for protection of 95% of species 2 - NHMRC Australian Drinking Water Guidelines (2011)

5 - In the absence of Australian guidelines, the USEPA (2012) Region 9 Screening Levels for tapwater have been adopted as a preliminary screening tool

a - In the absence of a high reliability guideline concentration, the moderate or low reliability guideline concentration has been quoted

b - In the absence of locally endorsed guidelines, the Dutch intervention levels (Ministry of Housing and the Environment 2000) have been quoted

c - 99% trigger values adopted due to the potential for bioaccumulation effects

i - ANZECC 2000 - Level for NSW Lowland Rivers.

m - Guideline value adopted for m-Xylene. We note that the m-Xylene guideline value is 75ug/L and the p-Xylene guideline value is 200ug/L. However these two isomers cannot be distinguished analytically. Therefore EIS have adopted the more conservative guideline value

r - The more conservative value for Benzo(b)fluoranthene has been adopted

PQLs for some individual compounds were greater than the GILs

** We note that the The PQLs for some compounds are above the GILs

Concentration above the GIL

VALUE

ABBREVIATIONS:

na: Not Analysed nsl: No Set Limit

GIL - Groundwater Investigation Levels

PQL: Practical Quantitation Limit

LPQL: Less than Practical Quantitation Limit

(-) : Not Applicable

SOIL INTR/	TA A-LABORATORY DUPLIC All results in mg/kg			ALCULATIO	INS	
SAMPLE	ANALYSIS	Envirolab PQL	INITIAL	REPEAT	MEAN	RPD %
Sample Ref = BH108(0.2-0.4m)	Arsenic	4	80	50	65	46.2
Dup Ref = Dup1	Cadmium	0.5	LPQL	LPQL	nc	nc
	Chromium	1	19	13	16	37.5
Envirolab Report: 86615	Copper	1	11	5	8	75.0
	Lead	1	110	55	82.5	66.7
	Mercury	0.1	LPQL	LPQL	nc	nc
	Nickel	1	6	3	4.5	66.7
	Zinc	1	71	36	53.5	65.4
	Naphthalene	0.1	LPQL	LPQL	nc	nc
	Acenaphthylene	0.1	LPQL	LPQL	nc	nc
	Acenaphthene	0.1	LPQL	LPQL	nc	nc
	Fluorene	0.1	LPQL	LPQL	nc	nc
	Phenanthrene	0.1	LPQL	LPQL	nc	nc
	Anthracene	0.1	LPQL	LPQL	nc	nc
	Fluoranthene	0.1	LPQL	LPQL	nc	nc
	Pyrene	0.1	LPQL	LPQL	nc	nc
	Benzo(a)anthracene	0.1	LPQL	LPQL	nc	nc
	Chrysene	0.1	LPQL	LPQL	nc	nc
	Benzo(b)&(k)fluorant	0.2	LPQL	LPQL	nc	nc
	Benzo(a)pyrene	0.05	LPQL	LPQL	nc	nc
	Indeno(123-cd)pyrene	0.1	LPQL	LPQL	nc	nc
	Dibenzo(ah)anthracene	0.1	LPQL	LPQL	nc	nc
	Benzo(ghi)perylene	0.1	LPQL	LPQL	nc	nc
	C ₆ -C ₉ TPH	25	LPQL	LPQL	nc	nc
	C ₁₀ -C ₁₄ TPH	50	LPQL	LPQL	nc	nc
	C15-C28 TPH	100	LPQL	LPQL	nc	nc
	C ₂₉ -C ₃₆ TPH	100	LPQL	LPQL	nc	nc
	Benzene	0.5	LPQL	LPQL	nc	nc
	Toluene	0.5	LPQL	LPQL	nc	nc
	Ethylbenzene	1	LPQL	LPQL	nc	nc
	m + p-xylene	2	LPQL	LPQL	nc	nc
	o-xylene	1	LPQL	LPQL	nc	nc

EXPLANATION:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value \leq = 50% are acceptable

Results between 5 & 10 times PQL = RPD value < = 75% are acceptable

Results < 5 times PQL = RPD value < = 100% are acceptable

RPD Results Above the Acceptance Criteria

VALUE

ABBREVIATIONS:

PQL: Practical Quantitation Limit LPQL: Less than PQL na: Not Analysed nc: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls TPH: Total Petroleum Hydrocarbons

Γ

SOI	L INTER-LABORATORY	TABLE I DUPLICATE R mg/kg unless	ESULTS & R		LATIONS			
SAMPLE	ANALYSIS	Envirolab	NMI	INITIAL	REPEAT	MEAN	RPD	
SAMPLE	ANAL 1515	PQL	PQL				%	
Sample Ref = BH110(0-0.1m)	Arsenic	4	0.5	700	660	680	5.9	
Dup Ref = Dup3	Cadmium	0.5	0.5	LPQL	LPQL	nc	nc	
	Chromium	1	0.5	20	21	20.5	4.9	
Envirolab Report: 86615	Copper	1	0.5	230	190	210	19.0	
NMI Report: N13/005751	Lead	1	0.5	100	260	180	88.9	
	Mercury	0.1	0.2	0.2	LPQL	0.2	nc	
	Nickel	1	0.5	5	11	8	75.0	
	Zinc	1	0.5	250	230	240	8.3	
	Naphthalene	0.1	0.5	LPQL	LPQL	nc	nc	
	Acenaphthylene	0.1	0.5	LPQL	LPQL	nc	nc	
	Acenaphthene	0.1	0.5	LPQL	LPQL	nc	nc	
	Fluorene	0.1	0.5	LPQL	LPQL	nc	nc	
	Phenanthrene	0.1	0.5	LPQL	LPQL	nc	nc	
	Anthracene	0.1	0.5	LPQL	LPQL	nc	nc	
	Fluoranthene	0.1	0.5	0.1	LPQL	0.1	nc	
	Pyrene	0.1	0.5	0.1	LPQL	0.1	nc	
	Benzo(a)anthracene	0.1	0.5	LPQL	LPQL	nc	nc	
	Chrysene	0.1	0.5	LPQL	LPQL	nc	nc	
	Benzo(b)&(k)fluorant	0.2	1	LPQL	LPQL	nc	nc	
	Benzo(a)pyrene	0.05	0.5	0.07	LPQL	0.07	nc	
	Indeno(123-cd)pyrene	0.1	0.5	LPQL	LPQL	nc	nc	
	Dibenzo(ah)anthracene	0.1	0.5	LPQL	LPQL	nc	nc	
	Benzo(ghi)perylene	0.1	0.5	LPQL	LPQL	nc	nc	
	Total OCPs	0.1	0.1	LPQL	LPQL	nc	nc	
	Total OPPs	0.1	0.1	LPQL	LPQL	nc	nc	
	Total PCBs	0.1	0.1	LPQL	LPQL	nc	nc	
	C ₆ -C ₉ TPH	25	25	LPQL	LPQL	nc	nc	
	C ₁₀ -C ₁₄ TPH	50	50	LPQL	LPQL	nc	nc	
	C ₁₅ -C ₂₈ TPH	100	100	LPQL	LPQL	nc	nc	
	C ₂₉ -C ₃₆ TPH	100	100	LPQL	LPQL	nc	nc	
	Benzene	0.5	0.5	LPQL	LPQL	nc	nc	
	Toluene	0.5	0.5	LPQL	LPQL	nc	nc	
	Ethylbenzene	1	0.5	LPQL	LPQL	nc	nc	
	m + p-xylene	2	1	LPQL	LPQL	nc	nc	
	o-xylene	1	0.5	LPQL	LPQL	nc	nc	

EXPLANATION:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value \leq = 50% are acceptable

Results between 5 & 10 times PQL = RPD value < = 75% are acceptable

Results < 5 times PQL = RPD value < = 100% are acceptable

RPD Results Above the Acceptance Criteria

VALUE

ABBREVIATIONS:

PQL: Practical Quantitation Limit LPQL: Less than PQL na: Not Analysed nc: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls TPH: Total Petroleum Hydrocarbons

TABLE JGROUNDWATER INTRA-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONSAll results in μ g/L unless stated otherwise

SAMPLE	ANALYSIS	Envirolab PQL	INITIAL	REPEAT	MEAN	RPD %
Sample Ref = MW101	Arsenic	1	3	3	3	0.0
Dup Ref = Dup1	Cadmium	0.1	0.2	0.2	0.2	0.0
	Chromium	1	3	2	2.5	40.0
Envirolab Report: 86620	Copper	1	2	2	2	0.0
	Lead	1	LPQL	LPQL	nc	nc
	Mercury	0.5	LPQL	LPQL	nc	nc
	Nickel	1	3	3	3	0.0
	Zinc	1	63	64	63.5	1.6
	C ₆ -C ₉ TPH	10	LPQL	LPQL	nc	nc
	C ₁₀ -C ₁₄ TPH	50	LPQL	LPQL	nc	nc
	C ₁₅ -C ₂₈ TPH	100	LPQL	LPQL	nc	nc
	C ₂₉ -C ₃₆ TPH	100	LPQL	LPQL	nc	nc
	Benzene	1	LPQL	LPQL	nc	nc
	Toluene	1	LPQL	LPQL	nc	nc
	Ethylbenzene	1	LPQL	LPQL	nc	nc
	m+p-xylene	2	LPQL	LPQL	nc	nc
	o-xylene	1	LPQL	LPQL	nc	nc

EXPLANATION:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value \leq 50% are acceptable

Results between 5 & 10 times PQL = RPD value < = 75% are acceptable

Results < 5 times PQL = RPD value < = 100% are acceptable

RPD Results Above the Acceptance Criteria

ABBREVIATIONS:

PQL: Practical Quantitation Limit LPQL: Less than PQL na: Not Analysed nc: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls TPH: Total Petroleum Hydrocarbons

	Enviro	lab PQL	FB1 ^s	RS1 ^w	TS1 ^w	
ANALYSIS		1	28.2.13	28.2.13	28.2.13	
	mg/kg	μg/L	Report No. 86615	Report No. 86615 µg/kg	Report No. 86620 % Recovery	
Benzene	1	1	mg/kg LPQL	LPQL	88	
Toluene	1	1	LPQL	LPQL	91	
Ethylbenzene	1	1	LPQL	LPQL	94	
m + p-xylene	2	2	LPQL	LPQL	95	
o-xylene	1	1	LPQL	LPQL	96	
^S Sample type (sand)	rip spikes are pr	esented as %	% recovery			
	ntance criteria	VALUE				
Values above PQLs/Acce	ptance criteria	VALUE				
	ptance criteria	VALUE				
Values above PQLs/Acce		VALUE TB: Trip Bla	ink			
Values above PQLs/Acce <u>ABBREVIATIONS:</u> PQL: Practical Quantitation						
Values above PQLs/Acce <u>ABBREVIATIONS:</u> PQL: Practical Quantitation LPQL: Less than PQL	on Limit	TB: Trip Bla	ike			
Values above PQLs/Acce <u>ABBREVIATIONS:</u> PQL: Practical Quantitation LPQL: Less than PQL (-) : Not Applicable / No	on Limit ot Analysed	TB: Trip Bla TS: Trip Sp	ike Sample			
Values above PQLs/Acce	on Limit ot Analysed Pesticides	TB: Trip Bla TS: Trip Sp RS: Rinsate	ike Sample alysed			

TABLE L SOIL INTRA-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in mg/kg unless stated otherwise

		Envirolab	INITIAL	REPEAT	MEAN	RPD
SAMPLE	ANALYSIS				MEAN	
		PQL				%
Sample Ref = $BH205$ (0-0.2m)	Arsenic	4	10	5	7.5	67
Dup Ref = DupA	Lead	1	280	240	260.0	15
	НСВ	0.1	LPQL	LPQL	NC	NC
Envirolab Report: 114380	Endosulfan	0.1	LPQL	LPQL	NC	NC
	Methoxychlor	0.1	LPQL	LPQL	NC	NC
	Aldrin & Dieldrin	0.1	LPQL	LPQL	NC	NC
	Chlordane	0.1	LPQL	LPQL	NC	NC
	DDT, DDD & DDE	0.1	LPQL	LPQL	NC	NC
	Heptachlor	0.1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value \leq 50% are acceptable

Results between 5 & 10 times PQL = RPD value < = 75% are acceptable

Results < 5 times PQL = RPD value < = 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

PQL: Practical Quantitation Limit LPQL: Less than PQL NA: Not Analysed NC: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls

TABLE M SOIL INTRA-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in mg/kg unless stated otherwise

SAMPLE	ANALYSIS	Envirolab	INITIAL	REPEAT	MEAN	RPD
	ANALISIS	PQL				%
Sample Ref = BH210 (0-0.1m)	Arsenic	4	220	180	200.0	20
Dup Ref = DupB	Lead	1	340	230	285.0	39
	НСВ	0.1	LPQL	LPQL	NC	NC
Envirolab Report: 114380	Endosulfan	0.1	LPQL	LPQL	NC	NC
	Methoxychlor	0.1	LPQL	LPQL	NC	NC
	Aldrin & Dieldrin	0.1	0.1	0.1	0.1	0
	Chlordane	0.1	LPQL	LPQL	NC	NC
	DDT, DDD & DDE	0.1	1	1	1.0	0
	Heptachlor	0.1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value < = 75% are acceptable

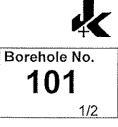
Results < 5 times PQL = RPD value < = 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

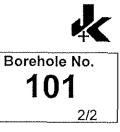
VALUE

Abbreviations:

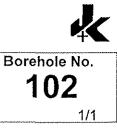

PQL: Practical Quantitation Limit LPQL: Less than PQL NA: Not Analysed NC: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls

APPENDIX A

Borehole Logs and Explanatory Notes


BOREHOLE LOG

	26305Z	Method: SPIRAL AUGER JK305					R.L. Surface: ≈ 150.3m Datum: AHD				
Date: 2	.0-2-13	Logged/Checked by: D.S./				Datum: AHD					
Groundwater Record ES	DB SAMPLES DS Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON OMPLET- ION	N = 11 4,5,6	0	СН	FILL: Silty sandy gravel, fine to medium grained igneous and alluvial river gravel, light grey brown and dark- brown, trace of ash. SILTY CLAY: high plasticity, orange brown, trace of fine to medium grained ironstone gravel and ash.	MC>PL	VSt	270 270 320				
	N = 22 8,8,14	2-		SILTY CLAY: high plasticity, light grey mottled red brown, with fine to medium grained ironstone gravel.		Н	450 500 500				
	N = 22 10,10,12	3-					550 560 550				
AFTER 5 HRS	N = 20 7,10,10	4					470 470 480				
	N > 12 10,12/ 	6					500 300 310				

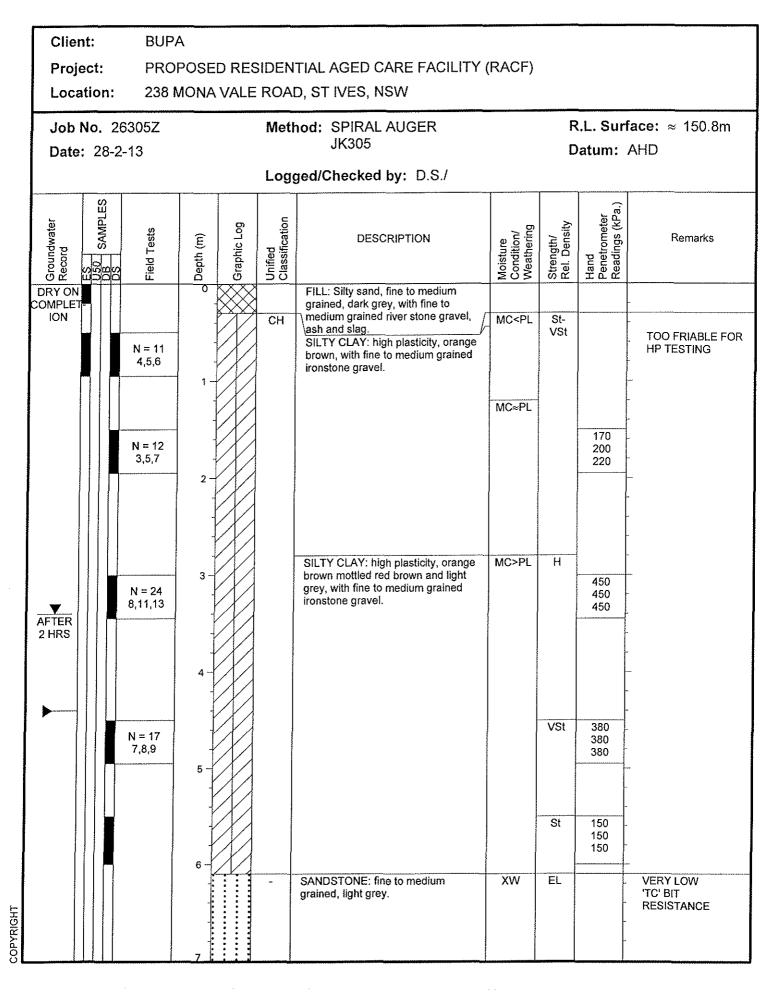

BOREHOLE LOG

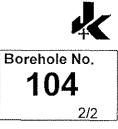
COPYRIGHT

Clie	nt:	BUP	4							
Proj						TIAL AGED CARE FACILITY	(RACF)			
Loca	ation:	238 N		VALE	ROAL	D, ST IVES, NSW				
	No. 26				Meth	od: SPIRAL AUGER JK305				face: ≈ 150.3m
Date	: 28-2	-13			Log	ged/Checked by: D.S./		D	atum:	AHD
	S		[]							
Groundwater Record	ES U50 DB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			-							DEPTH
										r
			_							
			8-							-
			-							
			9 -							
			-							-
			-							-
			10							
										-
			-							*
		******	11-							-
										-
			-							-
			12							-
			-							~
								Í		-
			13 -							-
			_14							-

BOREHOLE LOG

Proje Loca	ect: tion:					TIAL AGED CARE FACILITY	(RACF)					
	No. 20 : 28-2	6305Z -13	Method: SPIRAL AUGER JK305					R.L. Surface: ≈ 151.3m Datum: AHD				
	-			_	Log	ged/Checked by: D.S./						
Groundwater Record	ES U50 DS DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON OMPLET ION		N = 9 3,4,5	0		CL	FILL: Silty sandy clay, medium plasticity, dark brown, with fine to medium grained river stone gravel. SILTY CLAY: medium plasticity, orange brown and light brown, trace of fine grained ironstone gravel.	MC>PL	St	150 180 150			
•		N = 10 3,4,6	2-		СН	SILTY CLAY: high plasticity, light grey mottled orange brown, trace of fine to medium grained ironstone gravel.			180 190 200	- - -		
AFTER 4 HRS		N = 19 7,8,11	3			SILTY CLAY: high plasticity, light grey, with fine to medium grained ironstone gravel.		Н	450 450 500			
		N = 17 5,7,10	4 - - - 5 -					VSt	250 250 300			
			- 			END OF BOREHOLE AT 6.0m				HAND SLOTTED TEMPORARY PV STANDPIPE INSTALLED TO 6 DEPTH		


BOREHOLE LOG


	No. 2 : 28-2	238 I 6305Z 2-13	Method: SPIRAL AUGER JK305						R.L. Surface: ≈ 151.2m Datum: AHD			
Groundwater Record	ES U50 DB DS DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	ged/Checked by: D.S./ DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
			0			FILL: Gravel, fine to medium grained crushed concrete, light grey. FILL: Silty sand, fine to medium	M					
		N = 10 3,4,6	- - - - - -		СН	∖grained, dark grey. SILTY CLAY: high plasticity, orange brown.	MC>PL	VSt	350 350 350	<u> </u>		
		N = 14 7,6,8							330 350 350 -			
ON OMPLET ION & AFTER 3.25 HRS W		N = 11 4,5,6	3			SILTY CLAY: high plasticity, orange brown mottled red brown and light grey, with fine to medium grained ironstone gravel.		St- VSt	250 210 300			
•		N = 10 4,5,5	4 - 5					St	180 180 200			
			- - - - -			END OF BOREHOLE AT 6.0m			-			

BOREHOLE LOG

Borehole No. 104 1/2

BOREHOLE LOG

Client: Project:	BUPA PROPOSEI	D RESIDEN	TIAL AGED CARE FACILITY ((RACF)				
Location:			D, ST IVES, NSW					
Job No. 263 Date: 28-2-1			od: SPIRAL AUGER JK305	R.L. Surface: ≈ 150.8m Datum: AHD				
		Logę	jed/Checked by: D.S./	T				
Groundwater Record ES DS SAMPLES DS	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
COPYRGHT			SANDSTONE: fine to medium grained, light grey. SANDSTONE: fine to medium grained, light grey, with iron indurated seams. END OF BOREHOLE AT 12.0m	DW-SW	L-M		LOW TO MODERATE RESISTANCE MODERATE RESISTANCE WITH BANDED HIGH RESISTANCE	

BOREHOLE LOG

Borehole No. 105 1/1

Job N Date:		6305Z	MONA VALE ROAD, ST IVES, NSW Method: SPIRAL AUGER JK305 Logged/Checked by: D.S./						R.L. Surface: ≈ 151.2m Datum: AHD				
Dator	20 L	10											
Groundwater Record	USO SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLET			0			FILL: Silty clay, low plasticity, red brown, with fine to medium grained	MC <pl< td=""><td></td><td>-</td><td></td></pl<>		-				
ION		N = 12 5,6,6	1		СН	√river stone gravel, trace of ash. SILTY CLAY: high plasticity, orange brown, with fine to medium grained ironstone gravel.	_ MC <pl< td=""><td>Н</td><td>450 500 500</td><td></td></pl<>	Н	450 500 500				
		N = 20 7,8,12	2 -			SILTY CLAY: high plasticity, light grey, with fine to medium grained ironstone gravel.			550 500 550				
		N = 26 9,12,14	3-						>600 >600 >600				
		N = 20 8,10,10	4						450 480 500				
AFTER 1 HR						END OF BOREHOLE AT 6.0m							

BOREHOLE LOG

	POSE				(RACF)					
	IK305						R.L. Surface: ≈ 151.4m			
13			Log	ged/Checked by: D.S./						
Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
	0			FILL: Silty sand, fine to medium grained, with fine to medium grained	D		-			
N = 14 4,6,8			СН	SILTY CLAY: high plasticity, orange brown.	MC>PL	VSt	260 300 220			
N = 18				SILTY CLAY: high plasticity, light grey, with fine to medium grained ironstone gravel.	MC <pl< td=""><td>H</td><td>550 >600</td><td></td></pl<>	H	550 >600			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2		-	SANDSTONE: fine to medium grained, light grey, with clay seams. SANDSTONE: fine to medium grained, light grey, with L-M strength iron indurated seams.	XW	EL		BANDED VERY LO 'TC' BIT RESISTANCE BANDED LOW TO MODERATE RESISTANCE		
	5			SANDSTONE: fine to medium grained, light grey, with M strength iron indurated bands. as above, but with M-H strength iron indurated bands. END OF BOREHOLE AT 6.0m	DW	L		MODERATE RESISTANCE MODERATE TO HI RESISTANCE		
	238 M 305Z 13 st st pei E N = 14 4,6,8	238 MONA 305Z 13	238 MONA VALE 305Z 13	238 MONA VALE ROAL 305Z Meth 13 Logg stable (u) 13 N = 14 4.6,8 N = 18 7,9,9 2 A - A - A - A - A - A - A - A - A - A -	238 MONA VALE ROAD, ST IVES, NSW 305Z 13 Method: SPIRAL AUGER JK305 13 Logged/Checked by: D.S./ DESCRIPTION FILL: Silty sand, fine to medium grained, with fine to medium grained river stone gravel, ash and slag. N = 14 4,6,8 1 CH SILTY CLAY: high plasticity, light grey, with fine to medium grained, light grey, with clay seams. SANDSTONE: fine to medium grained, light grey, with L-M strength iron indurated seams. SANDSTONE: fine to medium grained, light grey, with M strength iron indurated bands. SANDSTONE: fine to medium grained, light grey, with M strength iron indurated bands. SANDSTONE: fine to medium grained, light grey, with M strength iron indurated bands.	305Z 13 Method: SPIRAL AUGER JK305 13 Logged/Checked by: D.S./ Subject of the second	238 MONA VALE ROAD, ST IVES, NSW 305Z Method: SPIRAL AUGER JK305 R 13 Logged/Checked by: D.S./ End of the spin set of the spin	238 MONA VALE ROAD, ST IVES, NSW 305Z R.L. Surf. JK305 13 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" 10 Colspan="2" FILL: Silty sand, fine to medium grained river store gravel, ash and slag. MC>PL VSI SANDSTONE: fine to medium grained river store gravel, ash and slag. XW EL SANDSTONE: fine to medium grained, light grey, with Clay seams. SANDSTONE: fine to medium grained, light grey, with M strength		

ENVIRONMENTAL LOG

107 1/1

Environmental logs are not to be used for geotechnical purposes

Clien	it:	MIDS	ON G	ROUP	PTY	LTD							
Proje	ect: tion:					TIAL AGED CARE FACILITY I D, ST IVES, NSW, 2075	DEVELC	PMEN	NT				
Job I	No. E20 : 25-2-1	6305K		Method: HAND AUGER					R.L. Surface: Datum:				
Groundwater Record	ES ASB ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLE -TION			0 - - - - 0.5		- 	ASHPHALTIC CONCRETE: 30mm.t./ FILL: Silty sand, fine to coarse grained, yellow brown with igneous / gravel. FILL: Silty clay, medium plasticity, grey orange brown, with ash and igneous gravel. SILTY CLAY: high plasticity, yellow brown mottled orange brown.	MC>PL MC>PL			- - -			
			- - 1 - -			END OF BOREHOLE AT 0.7m				- - -			
			1.5							• ••			
			2							- -			
			2.5							- 			
			3							• •			

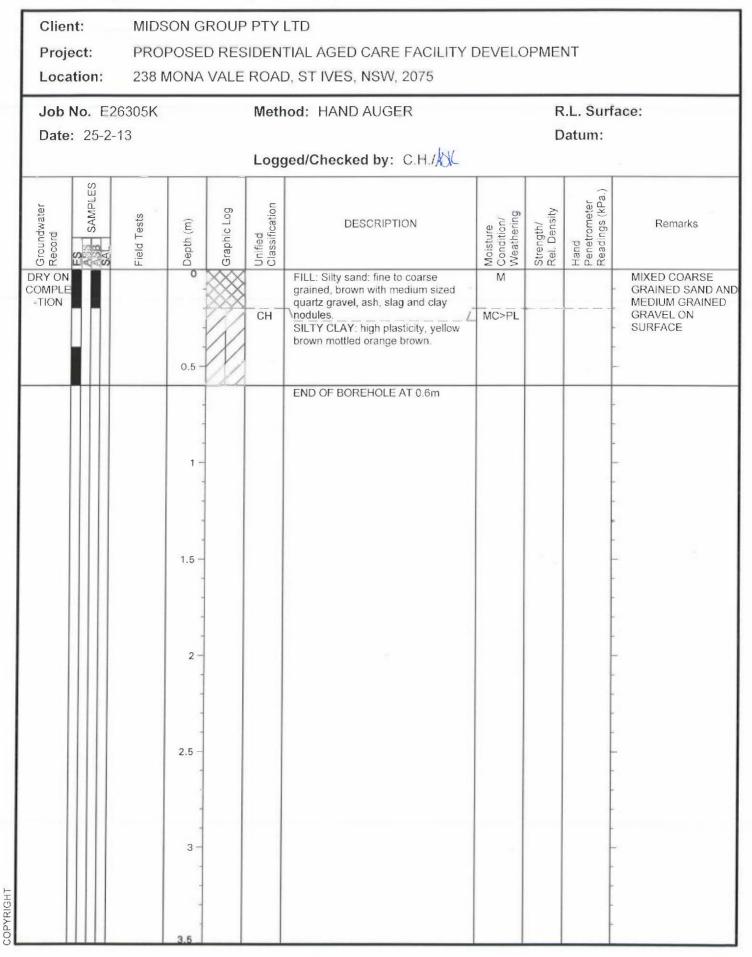
CONSULTING ENVIRONMENTAL ENGINEERS

COPYRIGHT

ENVIRONMENTAL LOG

108

						hnical purposes						
Clier Proje						LTD TIAL AGED CARE FACILITY [DEVELC	PME	NT			
	ation:					D, ST IVES, NSW, 2075						
Job	No . E2	6305K			Meth	nod: HAND AUGER	R.L. Surface:					
Date	: 25-2-	13					Datum:					
	S				Logi	ged/Checked by: C.H.//K						
Groundwater Record	ES ASS ASB ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLE -TION			0.5 -		- CL -	FILL: Silty sand, fine to coarse grained, brown, with medium grained/ youartz and igneous gravels. SILTY CLAY: medium plasticity, grey orange brown, with ash, igneous gravel and terracotta fragments. SILTY CLAY: high plasticity, yellow brown mottled orange brown.	M			MIXED COARSE GRAINED SAND ANE MEDIUM GRAINED GRAVEL ON SURFACE		
			- - 1 - -			END OF BOREHOLE AT 0.75m				- - - 		
			1.5 - - -							• ••• •		
			2									
			3-							- - - -		
			3.5									


CONSULTING ENVIRONMENTAL ENGINEERS

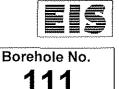
ENVIRONMENTAL LOG

Borehole No. **109** 1/1

Environmental	logs are not to	be used for geotechnical	purposes
---------------	-----------------	--------------------------	----------

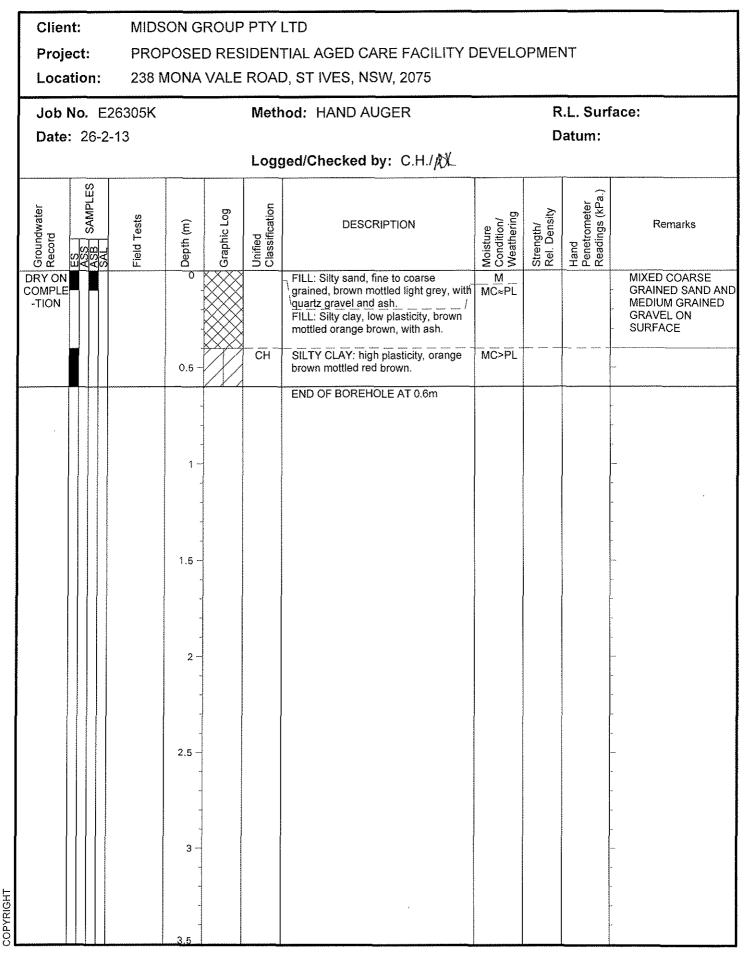
CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG


110

Environmental logs are not to be used for geotechnical purposes

ſ	Clie	nt:	MIDS	ON G	ROUP	PTY	LTD							
	Proj	ect:	PROF	POSE	D RES		TIAL AGED CARE FACILITY	DEVELC	PME	١T				
	Loca	ation:	238 N	IONA	VALE	ROAD	D, ST IVES, NSW, 2075							
f	Job	No. E	26305K			Meth	od: HAND AUGER	R.L. Surface: Datum:						
		e: 25-2												
				Logged/Checked by: C.H./ A										
	Groundwater Record	ES ASB SAMPLES SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
ľ				0	\bigotimes		FILL: Silty clay, medium plasticity, _dark brown grey, with ash.	MC>PL			MIXED COARSE GRAINED SAND AND			
				-		СН	SILTY CLAY: high plasticity, yellow brown mottled orange brown.	MC>PL			MEDIUM GRAINED GRAVEL ON - SURFACE			
ŀ				0.5			END OF BOREHOLE AT 0.5m							
				-							n			
				- 1-										
											- 			
				-										
				-										
				1.5 -							-			
				-							-			
				-							*			
				-										
				2 -							***			
				-							-			
				-							a			
				-							-			
				2.5 -							•			
				-							-			
				3 -							**			
				-							-			
Ë				-							-			
COPYRIGHT											-			
ġ,				3.5										


CONSULTING ENVIRONMENTAL ENGINEERS

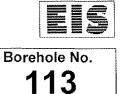
ENVIRONMENTAL LOG

1/1

Environmental logs are not to be used for geotechnical purposes

ENVIRONMENTAL LOG

112 1/1


Environmental logs are not to	be used for geotechnical purposes
-------------------------------	-----------------------------------

	Clier Proje		MIDS PROF				_TD FIAL AGED CARE FACILITY [DEVELC	PMEN	١T		
	Loca	ation:	238 N	IONA	VALE	ROAL	D, ST IVES, NSW, 2075					
		No. E26 : 26-2-1					od: HAND AUGER jed/Checked by: C.H.//欲	R.L. Surface: Datum:				
	Groundwater Record	ES ASS ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
	DRY ON COMPLE -TION					СН	FILL: Silty sandy gravel, fine to medium grained, dark brown, with ash and slag/ FILL: Silty clay, low plasticity, brown mottled orange brown, with ash/ SILTY CLAY: high plasticity, orange brown mottled red brown. END OF BOREHOLE AT 0.5m	D			BARE SURFACE	
				- - - 1 "							- - - 	
				- - - - -							• • •	
				2							• • •	
				2.5							**************************************	
COPYRIGHT				3.5							-	

CONSULTING ENVIRONMENTAL ENGINEERS

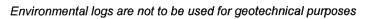
COPYRIGHT

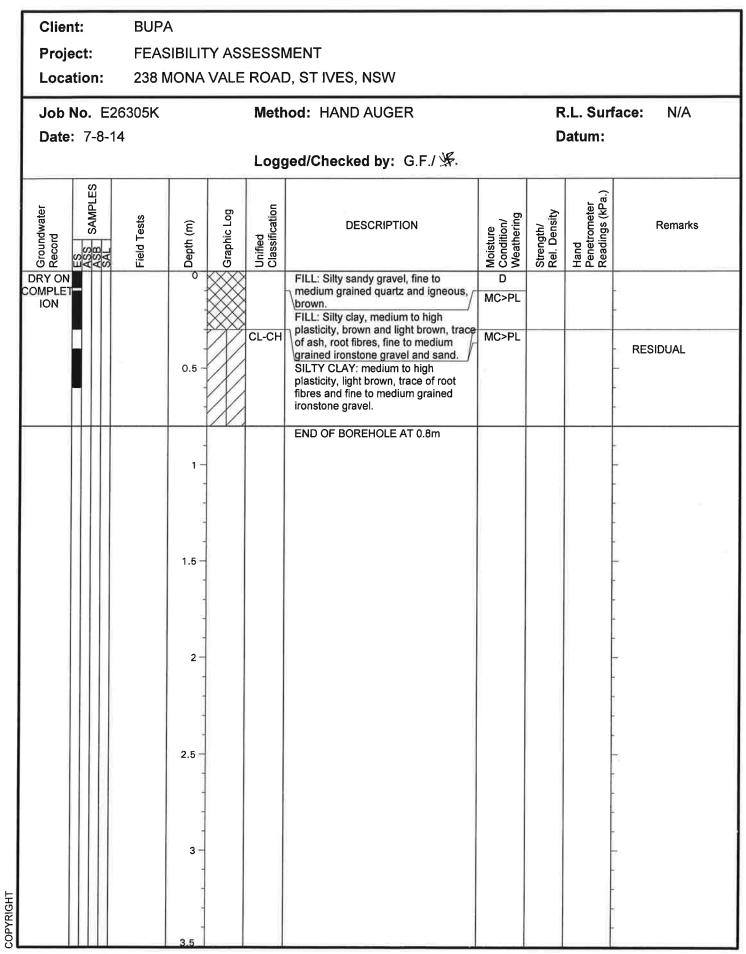
ENVIRONMENTAL LOG

1/1

Clier	nt:	MIDS	ON G	ROUP	PTY	LTD				
Proje	ect:	PROF	POSEI	D RES	IDEN	TIAL AGED CARE FACILITY I	DEVELC	PME	ΝT	
Loca	tion:	238 N	IONA	VALE	ROAI	D, ST IVES, NSW, 2075				
Job	No. E2	6305K			Meth	od: HAND AUGER		R	.L. Surf	ace:
Date	: 26-2-	13						D	atum:	
				,	Logo	ged/Checked by: C.H./	·····	······		
Groundwater Record	ES ASS SAMPLES SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE -TION			0		сн	FILL: Silty sandy gravel, fine to coarse coarse grained, with igneous gravel, ash and real standards are standards and real standards are standards and real standards are standa	D			IGNEOUS GRAVEL FINE TO MEDIUM ON SURFACE
			- 0.5 —			brown mottled red brown.				
				<u> </u>		END OF BOREHOLE AT 0.6m				
			4							•
			1							-
			-							-
			-							-
			-							-
			1.5				-			ала м
										-
			2							
		**************************************	-							•
			-							-
			2.5 -							_
			-							-
			-							
			3 -							- , <u>-</u>
			1							
			-							
										-

ENVIRONMENTAL LOG



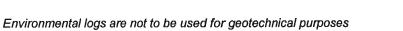

114 1/1

	Clier	nt:	MIDS	ON G	ROUP	PTY	LTD				
	Proj						TIAL AGED CARE FACILITY E	DEVELC	PME	NT	
		ation:			VALE		D, ST IVES, NSW, 2075				
		No. E2 : 26-2-				Meth	od: HAND AUGER			.L. Surf atum:	ace:
	Dutt	. 202				Log	ged/Checked by: C.H./(QL		_		
	Groundwater Record	ES ASB ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	DRY ON COMPLE			0			FILL: Silty sandy gravel, fine to coarse grained, with igneous gravel, ash and	D			MIXED COARSE GRAINED SAND AND
	-TION					СН	slag. SILTY CLAY: high plasticity, orange brown mottled red brown, trace of ironstone gravel.	MC>PL			MEDIUM GRAINED GRAVEL ON - \SURFACE -
							END OF BOREHOLE AT 0.6m				
				-		:					-
				- 1							N
											-
				-							
				- 1.5							-
											-
			:								
				2							-
				-							• -
				-							
				2.5 -							•
				-							-
				•							
				3-							na
				-							• •
COPYRIGHT				-							
9				3.5							

CONSULTING ENVIRONMENTAL ENGINEERS


ENVIRONMENTAL LOG

ENVIRONMENTAL LOG


Clier Proje Loca			BILIT	TY ASS VALE		/IENT D, ST IVES, NSW				
	No. E26 : 7-8-14					Nod: HAND AUGER			.L. Surf atum:	ace: N/A
Groundwater Record	ES ASS AAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	ged/Checked by: G.F.小子.	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION			0.5 -		CL-CH	FILL: Gravelly silty sand, fine to medium grained, brown and grey, fine to medium grained quartz, igneous and ironstone gravel, trace of ash and slag. SILTY CLAY: medium to high plasticity, light brown and orange brown, trace of ash and fine to medium grained ironstone gravel.	D MC>PL			RESIDUAL
			1-			END OF BOREHOLE AT 0.8m				-
			1.5 -							-
			2							- - -
			2.5 –							et ke - fi
			3 -						-	- - -
			3.5							

ENVIRONMENTAL LOG

E Borehole No. 203

Clie	nt:	BUPA	٩							
Proj	ect:	FEAS	SIBILIT	Y ASS	SESSN	MENT				
Loc	ation:	238 N	IONA	VALE	ROAL	D, ST IVES, NSW				
		26305K			Meth	od: HAND AUGER			.L. Surf	ace: N/A
Date	ə: 7-8-	-14			Logi	red/Chasked by: CE/JE		D	atum:	
	6				LOGÉ	ged/Checked by: G.F./굧.				
Groundwater Record	ES ASB ASB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE	N		0			FILL: Silty sand, fine to medium grained, brown, trace of root fibres	D			
ION			0.5	X	CL-CH	and glass fragments.	MC>PL			RESIDUAL
						END OF BOREHOLE AT 0.6m				
			>							.
			1-							
			1							e:
			1.5 -							-
										[
			3 1							£. 5
			2 -							-
										5)
			2.00							e5) ↓ ↓
			2.5 -	8						
			2.0							
			15 12							
			(a							• 4
			3-							2)
⊢			2 2							
COPYRIGHT			1							
CO			3,5							

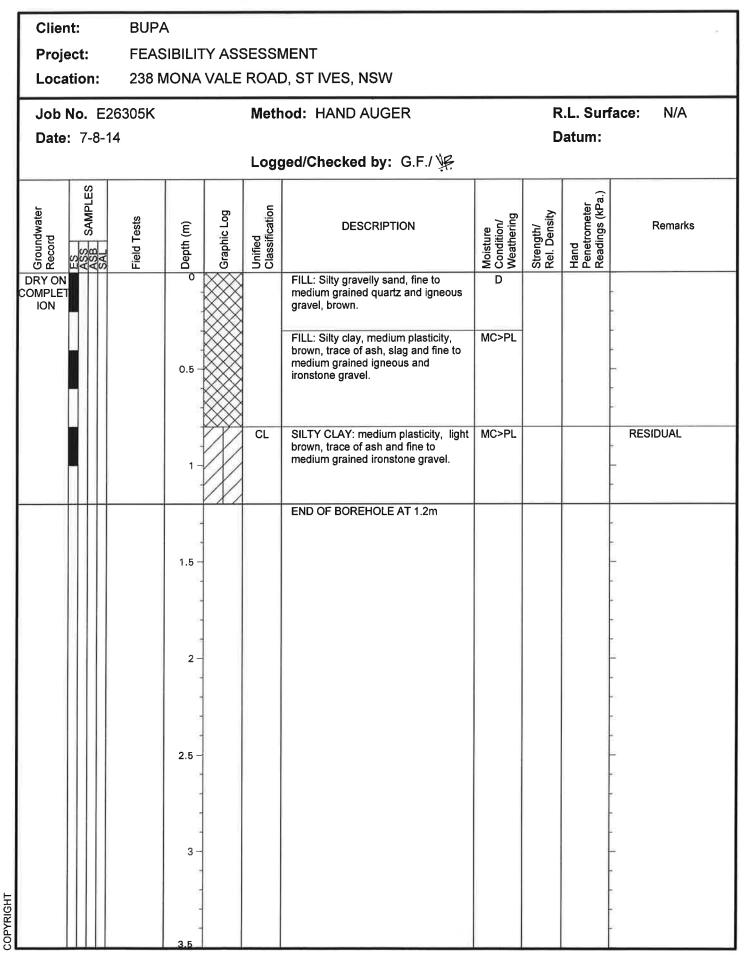
ENVIRONMENTAL LOG

	Clier	nt:	BUPA	4							
	Proje			BILIT							
		tion:		IONA	VALE		D, ST IVES, NSW				
		No. E : 7-8-	26305K			Meth	od: HAND AUGER			.L. Surf atum:	ace: N/A
	Buto	0				Log	ged/Checked by: G.F./奜		_		
	Groundwater Record	ES ASS ASB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	DRY ON COMPLET ION			0			FILL: Sandy silty gravel, fine to medium grained quartz and igneous, brown. FILL: Silty clay, medium plasticity,	D MC>PL			
5				0.5 -			light brown and brown, trace of fine to medium grained ironstone gravel, ash and concrete fragments. END OF BOREHOLE AT 0.3m				HAND AUEGR REFUSAL ON OBSTRUCTION IN FILL
				3 3 1 1 1 1 1 1							
				1.5							- - -
				2 -							
				2.5							
RIGHT				3 -							-
COPYRIGHT				3.5							

ENVIRONMENTAL LOG

Client: Project:	BUPA FEASIBILITY A	SSESSMENT	
Location:		LE ROAD, ST IVES, NSW	
Job No. E26 Date: 7-8-14		Method: HAND AUGER	R.L. Surface: N/A Datum:
Date. 7-0-14		Logged/Checked by: G.F.	
Groundwater Record ES ASB SAL SAL	Field Tests Depth (m) Granhic Loo	Classification Classification DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.) ssares
DRY ON COMPLET ION		FILL: Gravelly silty sand, fine medium grained, brown, fine medium grained quartz and ig grey, trace of ash and slag. FILL: Silty clay, medium to hi plasticity, brown, trace of ash fine to medium grained ironst	to D to gneous MC>PL gh , slag, tone and
		END OF BOREHOLE AT 0.5	M HAND AUGER REFUSAL ON OBSTRUCTION IN FILL

ENVIRONMENTAL LOG



Clien Proje			IBILIT	TY ASS						
Loca	tion:	238 N	IONA	VALE	ROAL	D, ST IVES, NSW				
	No. E2				Meth	od: HAND AUGER			L. Sur	face: N/A
Date	: 7-8-14	4			Logo	ged/Checked by: G.F./ 🔆		D	atum:	
Groundwater Record	ES ASS ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION			0.5 -			FILL: Gravelly clayey sand, fine to medium grained, red brown, light grey and yellow brown, fine to medium grained sandstone and ironstone gravel. FILL: Silty clay, medium plasticity, brown, trace of slag, fine to medium grained sand and fine to medium	M MC>PL			GRAVEL COVER
			0.5 -		CL-CH	grained ironstone gravel. SILTY CLAY: medium to high plasticity, light brown.	MC>PL			RESIDUAL
			-1			END OF BOREHOLE AT 1.0m				20 10 10
			1.5 -							
			2							
			2.5 -							
			3 -							
			3.5							

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG



ENVIRONMENTAL LOG

Borehole No. 208

Clier	nt:	BUPA	4							
Proje		FEAS	BILIT	Y ASS	SESSI	MENT				
	ation:	238 N	IONA	VALE	ROA	D, ST IVES, NSW				
Job	No. E	26305K			Meth	IOD: HAND AUGER		R	.L. Sur	face: N/A
Date	: 7-8-	14						D	atum:	
					Log	ged/Checked by: G.F./柴				
Groundwater Record	ES ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON OMPLET ION	T		0			FILL: Gravelly clayey sand, fine to medium grained, light grey, red brown and brown, fine to medium grained sandstone gravel. FILL: Silty clay, medium plasticity, brown and light brown, trace of ash and fine to medium grained ironstone	M MC>PL			GRAVEL COVER
			0.5 -		СН	gravel. SILTY CLAY: high plasticity, light brown and orange brown, trace of fine to medium grained ironstone gravel.	MC>PL			RESIDUAL
						END OF BOREHOLE AT 1.0m				
			1.5 -							
			2							
			2.5 -							
			3							
			3.5							

ENVIRONMENTAL LOG

Clie	nt:	BUPA	1							
Proj		FEAS								
	ation:			VALE	_	D, ST IVES, NSW				
	No . E26 : 7-8-14				Meth	od: HAND AUGER			L. Surf atum:	ace: N/A
Date	: : /-0-14	ł			Log	ged/Checked by: G.F./ 渠		U	atum.	
Groundwater Record	ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE			0	\otimes		FILL: Gravelly silty sand, fine to medium grained, grey and brown, fine	D			GRAVEL COVER
ION			0.5 -	X	СН	to medium grained quartz and igneous gravel. SILTY CLAY: high plasticity, light brown and orange brown, trace of fine to medium grained ironstone gravel.	MC>PL			RESIDUAL
						END OF BOREHOLE AT 0.6m				

ENVIRONMENTAL LOG

Borehole No. 210

Clier	nt:	BUPA	\							
Proje		FEAS								
Loca	ation:	238 N	IONA	VALE	ROAI	D, ST IVES, NSW				
Job	No. E2	6305K			Meth	od: HAND AUGER		R	.L. Sur	face: N/A
Date	: 7-8-1	4						D	atum:	
					Logo	jed/Checked by: G.F./ 桨				
Groundwater Record	ES ASS ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON OMPLET ION	T		0			FILL: Sandy gravel, fine to medium grained quartz, brown. FILL: Silty clay, medium plasticity, brown, trace of fine to medium grained sand, ash, slag and fine to medium grained ironstone gravel.	D MC>PL			
			0.5 -		СН	SILTY CLAY: high plasticity, light brown and orange brown, trace of ash and fine to medium grained ironstone gravel.	MC>PL			RESIDUAL
			1			END OF BOREHOLE AT 0.9m				
			1.5 -							+;
			2							20 22 23 24 24
			2.5 -							
			3							
			3.5						3	_

ENVIRONMENTAL LOG

Clie	nt:		BUPA	4							
	ject:			BILIT							
	ation			IONA	VALE		D, ST IVES, NSW				
	No. ə: 7-		305K			Meth	od: HAND AUGER			L. Surf atum:	ace: N/A
	. . /-	-1-	r			Logo	ged/Checked by: G.F./ y		U	atum.	
Groundwater Record	ES ASS SAMPLES	SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY OF				0	XX		FILL: Gravelly silty sand, fine to	D			DEOIDUIAI
ION				0.5 –	X	CL-CH	medium grained quartz and igneous gravel, trace of ash and slag. SILTY CLAY: medium to high plasticity, light brown and orange brown, trace of ash and fine to medium grained ironstone gravel.	MC>PL			RESIDUAL
- F				12			END OF BOREHOLE AT 0.6m				23
				-							e (
				1-							
	111			3	9						
				1							-
				1.5 -							-
				-						-	
				2 -						-	-
				2							
				5							
				2.5							
				2.5 –							-
										-	
				-							
				3 -						-	-
COPYRIGHT				-							
				3.5						-	

ENVIRONMENTAL LOG

Clier	nt:	BUPA	λ.							
Proje	ect:	FEAS								
Loca	tion:	238 N	IONA	VALE	ROAI	D, ST IVES, NSW				
Job	No. E2	6305K			Meth	od: HAND AUGER		R	.L. Surf	ace: N/A
Date	: 7-8-1	4						D	atum:	
					Log	ged/Checked by: G.F./y				
Groundwater Record	ES ASS ASB ASB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
RY ON MPLET ION			0			FILL: Gravelly silty sand, fine to medium grained, grey and brown, fine to medium grained igneous gravel. FILL: Silty sand, fine to medium grained, brown, trace of ash.	М			
			0.5 -		СН	SILTY CLAY: high plasticity, light brown and orange brown, trace of ash and fine to medium grained ironstone gravel.	MC>PL			RESIDUAL
			-1			END OF BOREHOLE AT 1.0m				
										÷
										1 1
				í.						
			1.5 -							0
				-						1
			8							
			2 -							_
			24							•
			20							-
			0							2)
			2.5 -							_
			2							
										5) 21
			-							÷
			3 -							_
			14							ŧ
			ہ 3.5							Ē.

EXPLANATORY NOTES – ENVIRONMENTAL LOGS

INTRODUCTION

These notes have been provided to supplement the environmental report with regards to drilling and field logging. Not all notes are necessarily relevant to all reports. Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies involve gathering and assimilating limited facts about these characteristics and properties in order to understand the ground on a particular site under certain conditions. These conditions are directly relevant only to the ground at the place where, and time when, the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below (note that unless stated in the report, the soil classification is based on a qualitative field assessment, not laboratory testing):

Soil Classification	Particle Size
Clay	less than 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2mm
Gravel	2 to 60mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as shown in the following table:

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 – 50
Firm	50 – 100
Stiff	100 – 200
Very Stiff	200 – 400
Hard	Greater than 400
Friable	Strength not attainable – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

DRILLING OR EXCAVATION METHODS

The following is a brief summary of drilling and excavation methods currently adopted by the Company, and some comments on their use and application. All except test pits and hand auger drilling require the use of a mechanical drilling rig.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descend into the pit. The depth of penetration is limited to approximately 3m for a backhoe and up to 6m for an excavator. Limitations of test pits include problems associated with disturbance and difficulty of reinstatement; and the consequent effects on nearby structures. Care must be taken if construction is to be carried out near test pit locations to either properly re-compact the backfill during construction, or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as fill, hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (e.g. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The locations of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

- In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as: N = 13 (4, 6, 7)
- In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as: N>30 (15, 30/40mm)

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid 60 tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "Nc" on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line"

variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open;
- A localised perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

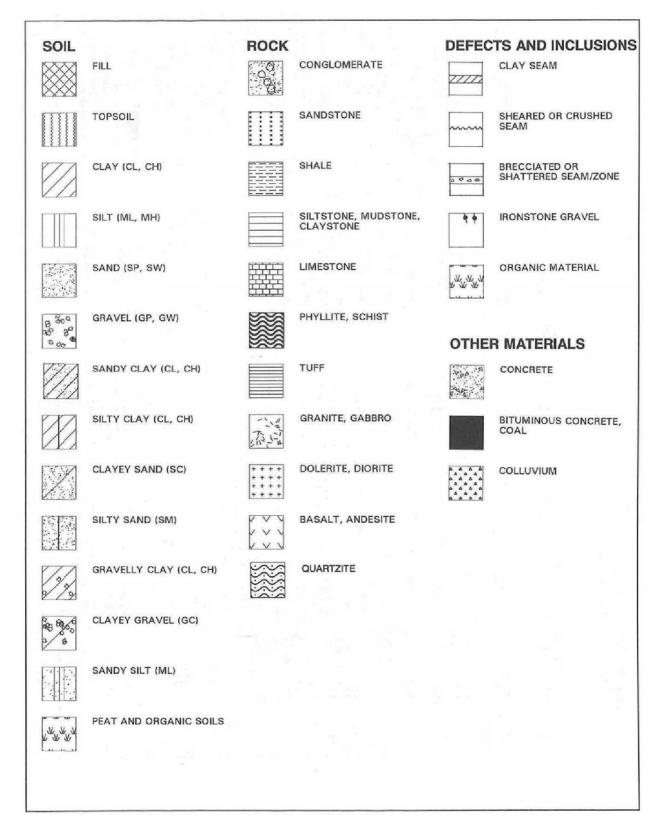
More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (e.g. bricks, concrete, plastic, slag/ash, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes

LABORATORY TESTING


Laboratory testing has not been undertaken to confirm the soil classifications and rocks strengths indicated on the environmental logs unless noted in the report.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, EIS should be notified immediately.

GRAPHIC LOG SYMBOLS FOR SOIL AND ROCKS

(Excluding parti	icles larger t	fication Proceed than 75 μ m and ated weights)		ons on	Group Symbols	Typical Names	Information Required for Describing Soils		Laboratory Classification Criteria						
d soils material is investical is investical is ked eye) More than half of coarse fraction is larger than 4 mm sieve size iravels with fraction is fraction is fra		1	Wide range i	in grain size at of all interme		GW	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name: indicate ap- proximate percentages of sand and gravel: maximum size;	fractions as given under field identification Determine percentages of gravel and sand from grain size curve Depending on percentage of fines (fraction smaller than 75 µm sieve size) coarse grained soils are classified as follows: Less than 5% More than 12% GM, GC, SW, SC More than 12% Borderline cases requiring use of dual symbols	$C_{\rm U} = \frac{D_{60}}{D_{10}} \qquad \text{Greater than 4}$ $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}} \qquad \text{Between 1 and 3}$						
		Clear		ly one size or a intermediate		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	angularity, surface condition, and hardness of the coarse	angularity, surface condition, and hardness of the coarse	angularity, surface condition, and hardness of the coarse	angularity, surface condition,	angularity, surface condition, and hardness of the coarse				
si lis size ^b e)	Graction is 4 mm s	s s ciable t of	Nonplastic fi cedures see	ines (for ident ML below)	ification pro-	GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses	n d sand action re class <i>Y</i> , <i>SP</i> <i>M</i> , <i>SC</i> ases re-	Atterberg limits below Above "A" li "A" line, or PI less with PI betwee than 4 4 and 7 a						
ined soils of material is an sieve size ^b naked eye)	More	Gravels with fines (appreciable amount of fines)	Plastic fines (see CL belo	for identificatio ow)	on procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	identification gravel and of fines (fra- tined cp. SW 30.derline cas dual symbo	Atterberg limits above "A" line, with PI greater than 7 borderline cas requiring use dual symbols						
Coarse-grained soils e than half of materia r than 75 μ m sieve si : visible to naked eye)	ands half of coarse s smaller than sieve size	Clean sands (little or no fines)		n grain sizes ar of all interme		S₩	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20% hard, angular gravel par-	under field ide centages of gr percentage of \$ coarse grain 5 % GW 8 0 d d	$C_{0} = \frac{D_{60}}{D_{10}} \qquad \text{Greater than 6}$ $C_{C} = \frac{(D_{20})^2}{D_{10} \times D_{60}} \qquad \text{Between 1 and 3}$						
C(More t <i>larger</i> particle v	nds half of smalle ieve si	Clea		ly one size or a intermediate		SP	Poorly graded sands, gravelly sands, little or no fines	ticles 12 mm maximum size: rounded and subangular sand grains coarse to fine, about	given un ne percei ing on pe ve size) c i than 5% to 12%	Not meeting all gradation requirements for S						
smallest p	Sa re than ction is 4 mm 5	Sands with fines (appreciable fines)		nes (for ident see ML below)		SM	Silty sands, poorly graded sand- silt mixtures	15% non-plastic fines with low dry strength; well com- pacted and moist in place;	ns as gi termine curve curve pending pending moseve f. Less th More 5% to	Atterberg limits below "A" line or PI less than 5 4 and 7 4 borderline cas						
t the sr	More 1 fractio	Sand fi (appro amou	Plastic fines (for identification procedures, see CL below)				Clayey sands, poorly graded sand-clay mixtures	alluvial sand; (SM)	Detern Detern Depen	Atterberg limits below "A" line with PI greater than 7						
pon	Identification I	Procedures of	on Fraction Sm	aller than 380	µm Sieve Size			2	the							
smaller sieve size is a	\$		Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				50	soils at equal liquid limit						
a ize	Silts and clays liquid limit less than 50		None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or claycy fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	with increa	and dry strength increase						
Grained soil f of materia 5 μm sieve s (The 75 μ	Silte		Medium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses	05 Plasticity 07 05 01 01 01 01 01 01 01 01 01 01 01 01 01							
			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-		OL MH						
Fin ore than ha than	0 754		Slight to medium	Slow to none	Slight to medium	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	mation on structure, stratifica- tion, consistency in undisturbed and remoulded states, moisture and drainage conditions	0 10 2							
Mo	Silts and liquid li greater t	8	High to very high	None	High	CH	Inorganic clays of high plas- ticity, fat clays	Example:		Liquid limit Plasticity chart						
	Silt liv 8re		Medium to high	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of fine sand; numerous vertical	for laborat	ory classification of fine grained soils						
Hi	ghly Organic So	oils		tified by col and frequent		Pt	Peat and other highly organic soils	root holes; firm and dry in place; locss; (ML)		-						

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). 2 Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.

LOG SYMBOLS

LOG COLUMN	SYMBOL	DEFINITION				
		Standing water level. Time delay following completion of drilling may be shown.				
Groundwater Record	- C -	Extent of borehole collapse shortly after drilling.				
		Groundwater seepage into borehole or excavation noted during drilling or excavation.				
Samples	ES U50 DB DS ASB ASS SAL	Soil sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos screening. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.				
	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual show blows per 150mm penetration. 'R' as noted below.				
Field Tests	Nc = 5 3 R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60 degree solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	VNS = 25	Vane shear reading in kPa of Undrained Shear Strength.				
	PID = 100	Photoionisation detector reading in ppm (Soil sample heads pace test).				
Moisture (Cohesive Soils)	MC>PL MC≈PL MC <pl< td=""><td colspan="5">Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.</td></pl<>	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.				
(Cohesionless)	D M W	 DRY – Runs freely through fingers. MOIST – Does not run freely but no free water visible on soil surface. WET – Free water visible on soil surface. 				
Strength (Consistency) Cohesive Soils	VS S F St VSt H ()	VERY SOFT- Unconfined compressive strength less than 25kPaSOFT- Unconfined compressive strength 25-5 0kPaFIRM- Unconfined compressive strength 50-1 00kPaSTIFF- Unconfined compressive strength 100- 200kPaVERY STIFF- Unconfined compressive strength 200- 400kPaHARD- Unconfined compressive strength greater than 400kPaBracketed symbol indicates estimated consistency based o n tactile examination or other tests.				
Density Index/ Relative Density (Cohesionless	VL	Density Index (ID) Range (%)SPT ' N' Value Range (Blows/300mm)Very Loose<15				
(Conesioniess Soils)	L MD D VD ()	Loose15-354-10Medium Dense35-6510-30Dense65-8530-50Very Dense>85>50Bracketed symbol indicates estimated density based on ease of drilling or other tests.				
Hand Penetrometer Readings	300 250	Numbers indicate individual test results in kPa on representative undisturbed material unless noted otherwise				
Remarks	'V' bit	Hardened steel 'V' shaped bit.				
	'TC' bit	Tungsten carbide wing bit.				
	T ₆₀	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.				

LOG SYMBOLS CONTINUED

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining and Geomechanics Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	ls (50) MPa	FIELD GUIDE
Extremely Low:	EL	0.03	Easily remoulded by hand to a material with soil properties.
Very Low:	VL	0.00	May be crumbled in the hand. Sandstone is "sugary" and friable.
Low:	L	0.1	A piece of core 150 mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium Strength:	м	0.3	A piece of core 150 mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
High:	н	3	A piece of core 150 mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
Very High:	VH	10	A piece of core 150 mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
Extremely High:	EH		A piece of core 150 mm long x 50mm dia. is very difficult to break with h and-held hammer . Rings when struck with a hammer.

ROCK STRENGTH

Bedding Plane Parting	Defect orientations measured relative to the normal to
Clay Seam	(i.e. relative to horizontal for vertical holes)
Joint	
Planar	
Undulating	
Smooth	
Rough	
Iron stained	
Extremely Weathered Seam	
Crushed Seam	
Thickness of defect in millimetres	
	Clay Seam Joint Planar Undulating Smooth Rough Iron stained Extremely Weathered Seam Crushed Seam

APPENDIX B

Laboratory Reports and Chain of Custody Documents

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

86615

Client: **Environmental Investigation Services** PO Box 976 North Ryde BC NSW 1670

Attention: Cameron Hollands

Sample log in details:

Your Reference: E26305K, St Ives No. of samples: Date samples received / completed instructions received

32 Soils, 1 Water 01/03/13 / 01/03/13

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 8/03/13 8/03/13 / Date of Preliminary Report: Not issued NATA accreditation number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

-Alana Nancy Zhang Chemist

Lulu Guo Approved Signatory

Envirolab Reference: **Revision No:**

86615 R 00

Alex MacLean

Chemist

Page 1 of 31

Client Reference: E26305K, St Ives

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	86615-1	86615-3	86615-5	86615-7	86615-8
Your Reference		BH101	BH102	BH103	BH104	BH104
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.2	0.5-0.95
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/201
Date analysed	-	05/03/2013	05/03/2013	05/03/2013	05/03/2013	05/03/201
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	104	102	107	100

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	86615-9	86615-10	86615-11	86615-13	86615-17
Your Reference		BH105	BH105	BH106	BH107	BH109
Depth		0.0-0.2	0.5-0.95	0.0-0.2	0.1-0.3	0.0-0.2
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	05/03/2013	05/03/2013	05/03/2013	05/03/2013	05/03/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	106	106	104	108	104

vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS 	86615-19 BH110 0.0-0.1 28/02/2013 Soil	86615-21 BH111 0.0-0.5 28/02/2013 Soil	86615-22 BH111 0.05-0.1 28/02/2013 Soil	86615-23 BH111 0.4-0.6 28/02/2013 Soil	86615-24 BH112 0.0-0.05 28/02/2013 Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	05/03/2013	05/03/2013	05/03/2013	05/03/2013	05/03/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	103	107	100	101

vTRH(C6-C10)/BTEXN in Soil					
Our Reference:	UNITS	86615-28	86615-29	86615-30	86615-32
Your Reference		BH114	BH114	DUP1	FB1
Depth		0.0-0.1	0.2-0.4	-	-
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	05/03/2013	05/03/2013	05/03/2013	05/03/2013
TRHC6 - C9	mg/kg	<25	<25	<25	[NA]
TRHC6 - C10	mg/kg	<25	<25	<25	[NA]
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	104	103	106	115

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	86615-1	86615-3	86615-5	86615-7	86615-8
Your Reference		BH101	BH102	BH103	BH104	BH104
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.2	0.5-0.95
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	150	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	160	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	119	94	88	95	65
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	86615-9	86615-10	86615-11	86615-13	86615-17

SVTRH (C10-C40) IN SOI						
Our Reference:	UNITS	86615-9	86615-10	86615-11	86615-13	86615-17
Your Reference		BH105	BH105	BH106	BH107	BH109
Depth		0.0-0.2	0.5-0.95	0.0-0.2	0.1-0.3	0.0-0.2
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	125	91	92	93	94

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	86615-19	86615-21	86615-22	86615-23	86615-24
Your Reference		BH110	BH111	BH111	BH111	BH112
Depth		0.0-0.1	0.0-0.5	0.05-0.1	0.4-0.6	0.0-0.05
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	310
TRHC29 - C36	mg/kg	<100	<100	<100	<100	490
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	660
TRH>C34-C40	mg/kg	<100	<100	<100	<100	230
Surrogate o-Terphenyl	%	93	115	106	88	114

svTRH (C10-C40) in Soil				
Our Reference:	UNITS	86615-28	86615-29	86615-30
Your Reference		BH114	BH114	DUP1
Depth		0.0-0.1	0.2-0.4	-
Date Sampled		28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013
TRHC 10 - C14	mg/kg	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100
TRHC 29 - C36	mg/kg	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100
Surrogate o-Terphenyl	%	91	99	87

Client Reference: E26305K, St Ives

PAHs in Soil						
Our Reference:	UNITS	86615-1	86615-3	86615-5	86615-7	86615-8
Your Reference		BH101	BH102	BH103	BH104	BH104
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.2	0.5-0.95
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	05/03/2013	05/03/2013	05/03/2013	05/03/2013	05/03/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.08	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	127	111	105	111	72

PAHs in Soil						
Our Reference:	UNITS	86615-9	86615-10	86615-11	86615-13	86615-17
Your Reference		BH105	BH105	BH106	BH107	BH109
Depth		0.0-0.2	0.5-0.95	0.0-0.2	0.1-0.3	0.0-0.2
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	05/03/2013	05/03/2013	05/03/2013	05/03/2013	05/03/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	76	106	109	108	114

PAHs in Soil						
Our Reference:	UNITS	86615-19	86615-21	86615-22	86615-23	86615-24
Your Reference		BH110	BH111	BH111	BH111	BH112
Depth		0.0-0.1	0.0-0.5	0.05-0.1	0.4-0.6	0.0-0.05
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	05/03/2013	05/03/2013	05/03/2013	05/03/2013	05/03/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.2
Benzo(a)pyrene	mg/kg	0.07	<0.05	<0.05	<0.05	0.07
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	109	109	115	99	109

PAHs in Soil				
Our Reference:	UNITS	86615-28	86615-29	86615-30
Your Reference		BH114	BH114	DUP1
Depth		0.0-0.1	0.2-0.4	-
Date Sampled		28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	05/03/2013	05/03/2013	05/03/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	112	116	110

Organochlorine Pesticides in soil						
Our Reference:	UNITS	86615-1	86615-3	86615-5	86615-7	86615-9
Your Reference		BH101	BH102	BH103	BH104	BH105
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	0.5	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
pp-DDD	mg/kg	0.8	<0.1	<0.1	<0.1	0.1
Endosulfan II	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	0.2	<0.1	<0.1	0.1	0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	119	102	98	101	83

Organochlorine Pesticides in soil						
Our Reference:	UNITS	86615-11	86615-13	86615-17	86615-19	86615-21
Your Reference		BH106	BH107	BH109	BH110	BH111
Depth		0.0-0.2	0.1-0.3	0.0-0.2	0.0-0.1	0.0-0.5
Date Sampled Type of sample		28/02/2013 Soil	28/02/2013 Soil	28/02/2013 Soil	28/02/2013 Soil	28/02/2013 Soil
		501		501	501	501
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
Dieldrin	mg/kg	2.8	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	0.2	<0.1	<0.1	<0.1	0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	0.6
pp-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	0.9
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	100	103	102	108

Organochlorine Pesticides in soil				
Our Reference:	UNITS	86615-22	86615-24	86615-28
Your Reference		BH111	BH112	BH114
Depth		0.05-0.1	0.0-0.05	0.0-0.1
Date Sampled		28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013
HCB	mg/kg	<0.1	<0.1	0.6
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	0.2
Dieldrin	mg/kg	<0.1	<0.1	0.2
Endrin	mg/kg	<0.1	0.6	<0.1
pp-DDD	mg/kg	<0.1	0.6	0.4
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	0.6	0.4
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	100	103

Organophosphorus Pesticides						
Our Reference:	UNITS	86615-1	86615-3	86615-5	86615-7	86615-9
Your Reference		BH101	BH102	BH103	BH104	BH105
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	119	102	98	101	83
Organophosphorus Pesticides						
Our Reference:	UNITS	86615-11	86615-13	86615-17	86615-19	86615-21

Organophosphorus Pesticides						
Our Reference:	UNITS	86615-11	86615-13	86615-17	86615-19	86615-21
Your Reference		BH106	BH107	BH109	BH110	BH111
Depth		0.0-0.2	0.1-0.3	0.0-0.2	0.0-0.1	0.0-0.5
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	100	103	102	108

Organophosphorus Pesticides				
Our Reference:	UNITS	86615-22	86615-24	86615-28
Your Reference		BH111	BH112	BH114
Depth		0.05-0.1	0.0-0.05	0.0-0.1
Date Sampled		28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	104	100	103

PCBs in Soil						
Our Reference:	UNITS	86615-1	86615-3	86615-5	86615-7	86615-9
Your Reference		BH101	BH102	BH103	BH104	BH105
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		28/02/2013 Soil	28/02/2013 Soil	28/02/2013 Soil	28/02/2013 Soil	28/02/2013 Soil
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	119	102	98	101	83
PCBs in Soil						
Our Reference:	UNITS	86615-11	86615-13	86615-17	86615-19	86615-21
Your Reference Depth		BH106 0.0-0.2	BH107 0.1-0.3	BH109 0.0-0.2	BH110 0.0-0.1	BH111 0.0-0.5
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242		<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg					
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	102	100	103	102	108
PCBs in Soil					ן	
Our Reference:	UNITS	86615-22	86615-24	86615-28		
Your Reference		BH111	BH112	BH114		
Depth		0.05-0.1	0.0-0.05	0.0-0.1		
Date Sampled		28/02/2013	28/02/2013	28/02/2013		
Type of sample		Soil	Soil	Soil		
Date extracted	-	04/03/2013	04/03/2013	04/03/2013		
Date analysed	-	06/03/2013	06/03/2013	06/03/2013		
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1		
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1		
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1		
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1		
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1		
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1		
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1		
Surrogate TCLMX	%	104	100	103		
		-			T	

Acid Extractable metals in soil						
Our Reference:	UNITS	86615-1	86615-3	86615-5	86615-7	86615-8
Your Reference		BH101	BH102	BH103	BH104	BH104
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.2	0.5-0.95
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Datedigested	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/201
Date analysed	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/201
Arsenic	mg/kg	240	38	360	590	20
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	33	6	10	32
Copper	mg/kg	84	2	7	24	2
Lead	mg/kg	140	38	16	2,300	68
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	5	4	4	2
Zinc	mg/kg	190	7	90	72	4
Acid Extractable metals in soil						
Our Reference:	UNITS	86615-9	86615-10 DLMOS	86615-11	86615-13	86615-1
Your Reference		BH105	BH105	BH106	BH107	BH109
Depth Date Sampled		0.0-0.2 28/02/2013	0.5-0.95 28/02/2013	0.0-0.2 28/02/2013	0.1-0.3 28/02/2013	0.0-0.2 28/02/201
Type of sample		Soil	28/02/2013 Soil	28/02/2013 Soil	28/02/2013 Soil	Soil
Date digested	_	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/201
-	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/201
Date analysed	-			47		
Arsenic	mg/kg	18	14		58	260
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	35	14	24	20
Copper	mg/kg	19	3	15	14	22
Lead	mg/kg	180	28	930	510	110
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	2	6	22	7
Zinc	mg/kg	27	5	71	660	53
Acid Extractable metals in soil						
Our Reference:	UNITS	86615-19	86615-21	86615-22	86615-23	86615-2
Your Reference		BH110	BH111	BH111	BH111	BH112
Depth		0.0-0.1	0.0-0.5	0.05-0.1	0.4-0.6	0.0-0.05
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Datedigested	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/201
Date analysed	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/201
Arsenic	mg/kg	700	570	400	4	71
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.5
Chromium	mg/kg	20	21	18	39	12
Copper	mg/kg	130	280	170	<1	110
Lead	mg/kg	100	450	45	13	140
Mercury	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	8	3	3	12
	5.5	1	1	1	1	1

Client Reference: E26305K, St Ives

Acid Extractable metals in soil						
Our Reference:	UNITS	86615-28	86615-29	86615-30	86615-34	86615-35
Your Reference		BH114	BH114	DUP1	BH101 -	BH110-
					Triplicate	Triplicate
Depth		0.0-0.1	0.2-0.4	-	0.0-0.1	0.0-0.1
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	04/03/2013	04/03/2013	04/03/2013	04/03/2013	04/03/2013
Arsenic	mg/kg	570	1,600	50	180	500
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	20	33	13	16	21
Copper	mg/kg	160	1	5	64	140
Lead	mg/kg	1,100	18	55	100	380
Mercury	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Nickel	mg/kg	6	3	3	4	5
Zinc	mg/kg	110	58	36	120	150

						,
Moisture Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS	86615-1 BH101 0.0-0.1 28/02/2013 Soil	86615-3 BH102 0.0-0.1 28/02/2013 Soil	86615-5 BH103 0.0-0.2 28/02/2013 Soil	86615-7 BH104 0.0-0.2 28/02/2013 Soil	86615-8 BH104 0.5-0.95 28/02/2013 Soil
Date prepared	-	04/03/13	04/03/13	04/03/13	04/03/13	04/03/13
Date analysed	-	05/03/13	05/03/13	05/03/13	05/03/13	05/03/13
Moisture	%	9.4	22	18	21	21
Moisture Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS	86615-9 BH105 0.0-0.2 28/02/2013 Soil	86615-10 BH105 0.5-0.95 28/02/2013 Soil	86615-11 BH106 0.0-0.2 28/02/2013 Soil	86615-13 BH107 0.1-0.3 28/02/2013 Soil	86615-17 BH109 0.0-0.2 28/02/2013 Soil
Date prepared Date analysed Moisture	- - %	04/03/13 05/03/13 13	04/03/13 05/03/13 20	04/03/13 05/03/13 11	04/03/13 05/03/13 17	04/03/13 05/03/13 17
Moisture Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS	86615-19 BH110 0.0-0.1 28/02/2013 Soil	86615-21 BH111 0.0-0.5 28/02/2013 Soil	86615-22 BH111 0.05-0.1 28/02/2013 Soil	86615-23 BH111 0.4-0.6 28/02/2013 Soil	86615-24 BH112 0.0-0.05 28/02/2013 Soil
Date prepared Date analysed Moisture	- - %	04/03/13 05/03/13 18	04/03/13 05/03/13 17	04/03/13 05/03/13 15	04/03/13 05/03/13 23	04/03/13 05/03/13 4.7
Moisture Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture	UNITS 	86615-28 BH114 0.0-0.1 28/02/2013 Soil 04/03/13 05/03/13 17	86615-29 BH114 0.2-0.4 28/02/2013 Soil 04/03/13 05/03/13 23	86615-30 DUP1 - 28/02/2013 Soil 04/03/13 05/03/13 18		

Asbestos ID - soils						
Our Reference:	UNITS	86615-1	86615-3	86615-5	86615-7	86615-9
Your Reference		BH101	BH102	BH103	BH104	BH105
Depth		0.0-0.1	0.0-0.1	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	7/03/2013	7/03/2013	7/03/2013	7/03/2013	7/03/2013
Sample mass tested	g	Approx 45g				
Sample Description	-	Dark brown fine-grained soil & rocks	Brown fine- grained soil & rocks	Dark brown fine-grained soil & rocks	Dark brown fine-grained soil & rocks	Dark brown fine-grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
Trace Analysis	-	No respirable fibres detected				
Asbestos ID - soils						
Our Reference:	UNITS	86615-11	86615-13	86615-17	86615-19	86615-21
Your Reference		BH106	BH107	BH109	BH110	BH111
Depth		0.0-0.2	0.1-0.3	0.0-0.2	0.0-0.1	0.0-0.5
DateSampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	7/03/2013	7/03/2013	7/03/2013	7/03/2013	7/03/2013
Sample mass tested	g	Approx 45g				
Sample Description	-	Dark brown	Brown fine-	Dark brown	Dark brown	Dark brown
		fine-grained soil & rocks	grained soil & rocks	fine-grained soil & rocks	fine-grained soil & rocks	fine-grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
Trace Analysis	-	No respirable fibres detected				

Asbestos ID - soils				
Our Reference:	UNITS	86615-22	86615-24	86615-28
Your Reference		BH111	BH112	BH114
Depth		0.05-0.1	0.0-0.05	0.0-0.1
Date Sampled		28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil
Date analysed	-	7/03/2013	7/03/2013	7/03/2013
Sample mass tested	g	Approx 45g	Approx 45g	Approx 45g
Sample Description	-	Brown fine-	Dark brown	Dark brown
		grained soil &	fine-grained	fine-grained
		rocks	soil & rocks	soil & rocks
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at
		reportinglimit	reporting limit	reportinglimit
		of 0.1g/kg	of 0.1g/kg	of 0.1g/kg
Trace Analysis	-	No respirable	No respirable	No respirable
		fibres	fibres	fibres
		detected	detected	detected

BTEX in Water		
Our Reference:	UNITS	86615-33
Your Reference		RS1
Depth		-
Date Sampled		28/02/2013
Type of sample		Water
Date extracted	-	01/03/2013
Date analysed	-	03/03/2013
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Surrogate Dibromofluoromethane	%	102
Surrogate toluene-d8	%	101
Surrogate 4-BFB	%	98

Client Reference: E26305K, St Ives

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II % RPD		
Date extracted	-			04/03/2 013	86615-1	04/03/2013 04/03/2013	LCS-5	04/03/2013
Date analysed	-			05/03/2 013	86615-1	05/03/2013 05/03/2013	LCS-5	05/03/2013
TRHC6 - C9	mg/kg	25	Org-016	<25	86615-1	<25 <25	LCS-5	103%
TRHC6 - C10	mg/kg	25	Org-016	<25	86615-1	<25 <25	LCS-5	103%
vTPHC6 - C10 less BTEX(F1)	mg/kg	25	Org-016	[NT]	86615-1	<25 <25	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	86615-1	<0.2 <0.2	LCS-5	108%
Toluene	mg/kg	0.5	Org-016	<0.5	86615-1	<0.5 <0.5	LCS-5	102%
Ethylbenzene	mg/kg	1	Org-016	<1	86615-1	<1 <1	LCS-5	95%
m+p-xylene	mg/kg	2	Org-016	~2	86615-1	<2 <2	LCS-5	106%
o-Xylene	mg/kg	1	Org-016	<1	86615-1	<1 <1	LCS-5	109%
naphthalene	mg/kg	1	Org-014	<1	86615-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	112	86615-1	103 104 RPD:1	LCS-5	105%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			04/03/2 013	86615-1	04/03/2013 04/03/2013	LCS-5	04/03/2013
Date analysed	-			06/03/2 013	86615-1	06/03/2013 06/03/2013	LCS-5	06/03/2013
TRHC 10 - C 14	mg/kg	50	Org-003	<50	86615-1	<50 <50	LCS-5	101%
TRHC 15 - C28	mg/kg	100	Org-003	<100	86615-1	<100 <100	LCS-5	99%
TRHC29 - C36	mg/kg	100	Org-003	<100	86615-1	150 <100	LCS-5	115%
TRH>C10-C16	mg/kg	50	Org-003	<50	86615-1	<50 <50	LCS-5	101%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	86615-1	<50 <50	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	86615-1	160 110 RPD:37	LCS-5	99%
TRH>C34-C40	mg/kg	100	Org-003	<100	86615-1	<100 <100	LCS-5	115%
Surrogate o-Terphenyl	%		Org-003	101	86615-1	119 98 RPD:19	LCS-5	112%

Client Reference: E26305K, St Ives											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
PAHs in Soil						Base II Duplicate II % RPD					
Date extracted	-			04/03/2 013	86615-1	04/03/2013 04/03/2013	LCS-5	04/03/2013			
Date analysed	-			05/03/2 013	86615-1	05/03/2013 05/03/2013	LCS-5	05/03/2013			
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	LCS-5	108%			
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]			
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]			
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	LCS-5	116%			
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	LCS-5	96%			
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]			
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	LCS-5	101%			
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	LCS-5	100%			
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]			
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	LCS-5	102%			
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	86615-1	<0.2 <0.2	[NR]	[NR]			
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	86615-1	0.08 0.05 RPD:46	LCS-5	120%			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]			
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]			
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]			
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	86615-1	<0.5 <0.5	[NR]	[NR]			
Surrogate p-Terphenyl- d14	%		Org-012 subset	115	86615-1	127 108 RPD:16	LCS-5	113%			

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		liceovery
Date extracted	-			04/03/2 013	86615-1	04/03/2013 04/03/2013	LCS-5	04/03/2013
Date analysed	-			06/03/2 013	86615-1	06/03/2013 06/03/2013	LCS-5	06/03/2013
HCB	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	LCS-5	107%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	LCS-5	115%
Heptachlor	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	LCS-5	107%
delta-BHC	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	LCS-5	119%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	LCS-5	112%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Endosulfanl	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	86615-1	0.4 0.6 RPD:40	LCS-5	108%
Dieldrin	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 0.1	LCS-5	107%
Endrin	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	LCS-5	113%
pp-DDD	mg/kg	0.1	Org-005	<0.1	86615-1	0.8 1.3 RPD:48	LCS-5	96%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	86615-1	0.5 0.8 RPD:46	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	86615-1	0.2 0.2 RPD:0	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	86615-1	0.3 0.4 RPD:29	LCS-5	121%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	107	86615-1	119 93 RPD:25	LCS-5	103%

		Clie	nt Referenc	e: E	26305K, St Iv	/es		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			04/03/2 013	86615-1	04/03/2013 04/03/2013	LCS-5	04/03/2013
Date analysed	-			06/03/2 013	86615-1	06/03/2013 06/03/2013	LCS-5	06/03/2013
Diazinon	mg/kg	0.1	Org-008	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	0.1	Org-008	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	0.1	Org-008	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	86615-1	<0.1 <0.1	LCS-5	109%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	86615-1	<0.1 <0.1	LCS-5	106%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	86615-1	<0.1 <0.1	LCS-5	104%
Surrogate TCMX	%		Org-008	107	86615-1	119 93 RPD:25	LCS-5	105%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			04/03/2 013	86615-1	04/03/2013 04/03/2013	LCS-5	04/03/2013
Date analysed	-			06/03/2 013	86615-1	06/03/2013 06/03/2013	LCS-5	06/03/2013
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	86615-1	<0.1 <0.1	LCS-5	114%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	86615-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	107	86615-1	119 93 RPD:25	LCS-5	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Datedigested	-			04/03/2 013	86615-1	04/03/2013 04/03/2013	LCS-1	04/03/2013
Date analysed	-			04/03/2 013	86615-1	04/03/2013 04/03/2013	LCS-1	04/03/2013
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	86615-1	240 140 RPD:53	LCS-1	94%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	86615-1	<0.4 <0.4	LCS-1	98%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	86615-1	17 18 RPD:6	LCS-1	97%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	86615-1	84 70 RPD:18	LCS-1	97%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	86615-1	140 110 RPD:24	LCS-1	96%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	86615-1	<0.1 <0.1	LCS-1	76%

		Clie	ent Referenc	e: E	26305K, St Iv	ves			
QUALITYCONTROL	ROL UNITS		METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Acid Extractable metals in soil						Base II Duplicate II % RPD			
Nickel	mg/kg	1	1 Metals-020 <1 86615-1 9 4 RPD:77 ICP-AES		LCS-1	97%			
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	86615-1	190 160 RPD:17	LCS-1	97%	
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank					
Date prepared	-			[NT]	-				
Date analysed	-			[NT]					
Moisture	%	0.1	Inorg-008	[NT]					
QUALITYCONTROL	UNITS	PQL	METHOD	Blank					
Asbestos ID - soils									
Date analysed	-	1		[NT]	1				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %	
					Sm#			Recovery	
BTEX in Water						Base II Duplicate II % RPD			
Date extracted	-			01/03/2 013	[NT]	[NT]	LCS-W1	01/03/2013	
Date analysed	-			03/03/2 013	[NT]	[NT]	LCS-W1	03/03/2013	
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	107%	
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	107%	
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	107%	
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W1	109%	
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	108%	
Surrogate Dibromofluoromethane	%		Org-016	103	[NT]	[NT]	[NT] LCS-W1		
Surrogate toluene-d8	%		Org-016	101	[NT]	[NT]	LCS-W1	99%	
Surrogate 4-BFB	%	Org-01		97	[NT]	[NT]	LCS-W1	99%	
QUALITYCONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	S	Dup. Sm#			Spike Sm# PD	Spike % Reco	overy	
Date extracted	-		86615-19	04/03/2013 04/03/2013		3 86615-3	04/03/201	3	
Date analysed	-		86615-19	05/03/2013 05/03/2013			05/03/201		
TRHC6 - C9	mg/k		86615-19	<25 <25		86615-3	92%		
TRHC6 - C10	mg/k	-	86615-19		<25 <25	86615-3	92%		
vTPHC6 - C10 less BTEX (F1)	mg/k	-	86615-19		<25 <25	[NR]	92 % [NR]		
Benzene	mg/k	g	86615-19		<0.2 <0.2	86615-3	95%		
Toluene	mg/k	g	86615-19		<0.5 <0.5	86615-3	91%		
Ethylbenzene	mg/k	g	86615-19		<1 <1	86615-3	84%		
m+p-xylene	mg/k	g	86615-19		<2 <2	86615-3	94%		
o-Xylene	mg/k	-	86615-19		<1 <1	86615-3	96%		
naphthalene	mg/k	-	86615-19		<1 <1	[NR]	[NR]		
Surrogate aaa- Trifluorotoluene	%	-	86615-19	103	106 RPD:3	86615-3	102%		

		Client Referenc	e: E26305K, St Ives				
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD				
Date extracted	-	86615-19	04/03/2013 04/03/2013	86615-3	04/03/2013		
Date analysed	-	86615-19	06/03/2013 06/03/2013	86615-3	06/03/2013		
TRHC 10 - C 14	mg/kg	86615-19	<50 <50	86615-3	84%		
TRHC 15 - C28	mg/kg	86615-19	<100 <100	86615-3	83%		
TRHC29 - C36	mg/kg	86615-19	<100 <100	86615-3	98%		
TRH>C10-C16	mg/kg	86615-19	<50 <50	86615-3	84%		
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	86615-19	<50 <50	[NR]	[NR]		
TRH>C16-C34	mg/kg	86615-19	<100 <100	86615-3	83%		
TRH>C34-C40	mg/kg	86615-19	<100 <100	86615-3	98%		
Surrogate o-Terphenyl	%	86615-19	93 114 RPD:20	86615-3	96%		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
PAHs in Soil			Base + Duplicate + %RPD				
Date extracted	-	86615-19	04/03/2013 04/03/2013	86615-3	04/03/2013		
Date analysed	-	86615-19	05/03/2013 05/03/2013	86615-3	05/03/2013		
Naphthalene	mg/kg	86615-19	<0.1 <0.1	86615-3	109%		
Acenaphthylene	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]		
Acenaphthene	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]		
Fluorene	mg/kg	86615-19	<0.1 <0.1	86615-3	112%		
Phenanthrene	mg/kg	86615-19	<0.1 <0.1	86615-3	93%		
Anthracene	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]		
Fluoranthene	mg/kg	86615-19	0.1 <0.1	86615-3	98%		
Pyrene	mg/kg	86615-19	0.1 <0.1	86615-3	93%		
Benzo(a)anthracene	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]		
Chrysene	mg/kg	86615-19	<0.1 <0.1	86615-3	100%		
Benzo(b+k)fluoranthene	mg/kg	86615-19	<0.2 <0.2	[NR]	[NR]		
Benzo(a)pyrene	mg/kg	86615-19	0.07 0.05 RPD: 33	86615-3	120%		
Indeno(1,2,3-c,d)pyrene	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]		
Dibenzo(a,h)anthracene	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]		
Benzo(g,h,i)perylene	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]		
Benzo(a)pyrene TEQ	mg/kg	86615-19	<0.5 <0.5	[NR]	[NR]		
<i>Surrogate p</i> -Terphenyl- d14	%	86615-19	109 118 RPD:8	86615-3	105%		

Client Reference: E26305K, St Ives													
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery								
Date extracted	-	86615-19	04/03/2013 04/03/2013	86615-3	04/03/2013								
Date analysed	-	86615-19	06/03/2013 06/03/2013	86615-3	06/03/2013								
HCB	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
alpha-BHC	mg/kg	86615-19	<0.1 <0.1	86615-3	104%								
gamma-BHC	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
beta-BHC	mg/kg	86615-19	<0.1 <0.1	86615-3	111%								
Heptachlor	mg/kg	86615-19	<0.1 <0.1	86615-3	106%								
delta-BHC	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
Aldrin	mg/kg	86615-19	<0.1 <0.1	86615-3	108%								
Heptachlor Epoxide	mg/kg	86615-19	<0.1 <0.1	86615-3	111%								
gamma-Chlordane	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
alpha-chlordane	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
Endosulfan I	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
pp-DDE	mg/kg	86615-19	<0.1 <0.1	86615-3	108%								
Dieldrin	mg/kg	86615-19	<0.1 <0.1	86615-3	108%								
Endrin	mg/kg	86615-19	<0.1 <0.1	86615-3	112%								
pp-DDD	mg/kg	86615-19	<0.1 <0.1	86615-3	107%								
Endosulfan II	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
pp-DDT	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
Endrin Aldehyde	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
Endosulfan Sulphate	mg/kg	86615-19	<0.1 <0.1	86615-3	121%								
Methoxychlor	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]								
Surrogate TCMX	%	86615-19	102 115 RPD:12	86615-3	95%								

		Client Reference	e: E26305K, St Ives		
QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	86615-19	04/03/2013 04/03/2013	86615-3	04/03/2013
Date analysed	-	86615-19	06/03/2013 06/03/2013	86615-3	06/03/2013
Diazinon	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	86615-19	<0.1 <0.1	86615-3	105%
Fenitrothion	mg/kg	86615-19	<0.1 <0.1	86615-3	100%
Bromophos-ethyl	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	86615-19	<0.1 <0.1	86615-3	101%
Surrogate TCMX	%	86615-19	102 115 RPD:12	86615-3	101%
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	86615-19	04/03/2013 04/03/2013	86615-3	04/03/2013
Date analysed	-	86615-19	06/03/2013 06/03/2013	86615-3	06/03/2013
Arochlor 1016	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	86615-19	<0.1 <0.1	86615-3	108%
Arochlor 1260	mg/kg	86615-19	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	86615-19	102 115 RPD:12	86615-3	104%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	86615-19	04/03/2013 04/03/2013	86615-3	04/03/2013
Date analysed	-	86615-19	04/03/2013 04/03/2013	86615-3	04/03/2013
Arsenic	mg/kg	86615-19	700 600 RPD:15	86615-3	#
Cadmium	mg/kg	86615-19	<0.4 <0.4	86615-3	85%
Chromium	mg/kg	86615-19	20 18 RPD:11	86615-3	87%
Copper	mg/kg	86615-19	130 230 RPD:56	86615-3	96%
Lead	mg/kg	86615-19	100 100 RPD:0	86615-3	112%
Mercury	mg/kg	86615-19	0.1 0.2 RPD:67	86615-3	83%
Nickel	mg/kg	86615-19	5 5 RPD:0	86615-3	82%
Zinc	mg/kg	86615-19	250 200 RPD:22	86615-3	84%

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 86615-1 for As, Ni. Therefore a triplicate result has been issued as laboratory sample number 86615-34.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 86615-19 for Cu. Therefore a triplicate result has been issued as laboratory sample number 86615-35.

Acid Extractable Metals in Soil:

Percent recovery is not possible to report for As due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos:

Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Asbestos ID was analysed by Approved Identifier:	Alex Tam
Asbestos ID was authorised by Approved Signatory:	Lulu Guo

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Reference:	86615
Revision No:	R 00

Client:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Environmental Investigation Services PO Box 976	ph: 02 9888 5000 Fax: 02 9888 5001
North Ryde BC NSW 1670	
Attention: Cameron Hollands	
Sample log in details:	
Your reference:	E26305K, St Ives
Envirolab Reference:	86615
Date received:	01/03/13
Date results expected to be reported:	8/03/13
Samples received in appropriate condition for analysis:	VEC

Samples received in appropriate condition for analysis:	YES
No. of samples provided	32 Soils, 1 Water
Turnaround time requested:	Standard
Temperature on receipt	Cool
Cooling Method:	Ice Pack
Sampling Date Provided:	YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

TQ: Envirolab Services Pty Ltd 12 Ashley Street Chatswood NSW 2067						, r								mental I 15 Wic Jarie Pa	ks Roa	əd			
Phone: (02) Fax: (02) 99	99106	5200			Date Results Required: 5 days								Macquarie Park NSW 2113 Phone: (02) 9888 5000 Fax: (02) 9888 5004						
Attention: A	ileen							Sheet		١		2_	Conta	ct:					
Project: Pro	pose	d RACF	•										Sampl	e Prese	rvatior	ı:			
ocation: 4								_	_				In es	ky on id	ce				
Sampler: 🤇			<u>,</u>			<u> </u>			sts R ₽	equir o	ed			2	s			2	
Date Sampled	Lab Ref:	Borehole/ Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo (Combo 6a	Combo 1	8 Metals	Hdil	втех	PAHs	OCP/OPP/ PCBs	Asbestos	TCLP 6 Metals	TCLP PAHs	₽¢сК♪€	
28/2/13	1	BHIO	0-0.1	Glass jar + Asb Bag	Û	Fill		\times	·										
	2		0.5-	Glass jar + Asb Bag	0	Silly CLAY													
	3	VEIUX	0-0.1	Glass jar + Asb Bag	0	Fill		\times											
	4	V.	0.5-09	Glass jar + Asb Bag	0	SILTYCLAY													
	5	BHIO3	0.0-	Glass jar + Asb Bag	0	File		\boldsymbol{X}											
	6		0.50.99	Glass jar + Asb Bag	0	SILTYCLAY													
	7	RUINL	0-0-2	Massjar +	0	Fill		X											
	8	V	0.5 ₆₄ 5	Glass jar + Asb Bag	0	SILTYCLAY												X	
	9	BH105	0.0-	Glass jar + Asb Bag	0	Fill		X			<u> </u>								
	$ \mathbf{n} $	1	0.5-0.95	Glass jar + Asb Bag	٥	SILTY CLAY												X	
	11	B4106	0-0-2	Glass jar + Asb Bag	д	Fill		\times											
	12		0.2.0.4	Glass jar + Asb Bag	0	SILTY CLAY							ļ						
	13	BHIOY	0.1-0.3	Glass jar + Asb Bag	ð	Fill		$\left X \right $								<u> </u>			
	14		0.2-0.7	Glass jar + Asb Bag	0	SILTY CLAY										Sarri			
	15		0.2-0.6	Glass jar + Asb Bag	0	SILTY CLAY						EŃ		Chet		Ashle			
-	16	J/	0.6-07	Glass jar +	0	SETTCAT							No:			9910 E	00		
	17	BHIOG	0-0:2	Glass jar + Asb Bag	Ô	Fill.		$ \times$			1			86	615		ļ		
	18		0.4-0.9	Glass jar +	0	SILTY LEAY			i			Time	Rece	ved: g	12/1	₹0			
	19		0.0-0.1	Glass jar + Asb Bag	ô	FiLL		X		 		Reco Tem	7	5 9			ļ		
	20	V	04-05	Glass jar +	0	SILTY	ļ				_	Ceol		NO)					
	21	RMII	0-0.05	Glass jar +	0	Fill		ĮΧ		 			ζ.				<u> </u>		
	22		0.05 0.1	Glass jar + Asb Bag	0	Fill		X					ļ <u>.</u>	ļ		<u> </u>	<u> </u>		
	23		04-0.6	Glass jar +	D	Sint CIAY		<u> </u>	ļ		<u> </u>	ļ		<u> </u>	ļ	<u> </u>	ļ	X	
	24	BHILD	0.0-	Glass jar + Asb Bag	0	Fi'LL	<u> </u>	X					ļ	_	 	<u> </u>			
	25		0305	Glass jar +	0	SILTY CLAY	1	<u> </u>					<u> </u>					<u> </u>	
Remarks (con	nments	/detection lin	nits required					_											
		hollon	ds	Date:	112		Time	RM				ived By		rd		1/3/	13	: 5 0	

· •

, -.

2

<u>TO:</u> Envirolab S 12 Ashley S		es Pty Ltd				AND CHA		FROM: Environmental Investigation Services Rear 115 Wicks Road										
Chatswood Phone: (02) Fax: (02) 99	NSN 9910	6200			Date Results Required: 5 days.							Macquarie Park NSW 2113 Phone: {02} 9888 5000 Fax: {02} 9888 5004						
Attention: A								Sheet	1	2	3	<u></u>	Conta	ct: Car	Merc	n ¹	lollaro	les
Project: Pr	op. K	ACF											Samp	ie Prese	rvatio	י:		
Location: 🕄													Ines	sky on id	e	/		
Sampler: 🕻	<u>95 / 1</u>	CH		· · · · · · · · · · · · · · · · · · ·	T				sts R	equir	ed				V	r · · ·	<u> </u>	
Date Sampled	Lab Ref:	Borehole/ Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 6a	Combo 13	8 Metals	Нат	втех	PAHs	OCP/OPP/ PCBs	Asbestos	TCLP 6 Metals	TCLP PAHs	Package
	26	BHII3	0.0-	Glass jar + Asb Bag	0	SILTY SAVEY GRAVEL				-								
	27	\downarrow	0.3-	Glass jar + A eb Bag	0	SILTY CLAY									~			
	28	BH114	0.0-1	Glass jar + Asb Bag	0	Fi4		X										<u> </u>
	29		0.24		0	SILTY CLAY												$ $ \times
	30	Dur		Glass jar + A sb Bag	-	Sail			r							<u> </u>		$ \ge$
	3	Jup 2	-	Glass jar + Asb Bao		Soil												
		DUP3	-	Glassjar + Asb_Bog	-	Soil					ļ	<u> </u>		ļ		<u> </u>	ļ	$\downarrow \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
	32	FBI		Glass jar + Ash Bag	-	Sand				 		X				ļ		_
	33	RS /		Glass jar + A eb-Bag	-	wher		<u> </u>			<u> </u>	X		-			<u> </u>	1
		TS 1		Glass jar + As b-Dag				<u> </u>			<u></u>			<u> </u>			<u> </u>	+
		MWIOL		Glass jar +			<u> </u>				<u> </u>							
	L	MWIOZ		Glass iar + Ash Pag												<u> </u>		
				Glass jar + Asb Bag														
				Glass jar + Asb Bag														
			•	Glass jar + Asb Bag												2		
•				Glass jar + Asb Bag							1						•	
				Glass jar + Asb Bag		<u> </u>			1									
				Glass jar +					· ·			1						
				Asb Bag Glass jar +			1			1	1						1	
				Asb Bag Glass jar +			-	+		-		<u> </u>	1	-	-	1	•	
		·		Asb Bag Glass jar +				+		+			+	+		· · ·		+
	<u> </u>			Asb Bag Glass jar +			-	+		<u> </u>		-			+	+		-
		·	<u> </u>	Asb Bag Glass jar +		+			<u> </u>						╞──		+	+
				Asb Bag Glass jar +					┼	1		+		+				+
				Asb Bag Glass jar +								+						╋
	<u> </u>	(1		Asb Bag			<u> </u>			<u> </u>			1			_	<u> </u>	
Remarks Icon	nments		nits required	$\frac{1}{2}$	ς.	to N	M	1	L	r	pa	e Ke	,e7	# 3	(TP	4/BEE	x,14	Hs
Relinguished	і.}Қ Ву:	Juno	~ 0	Date: ,		to N	Tim	ə:	,		/ Rece	eivelj, B	y: 0110	iel the	$\overline{\lambda}$	1A	;CD	<u>t H/</u>
Camer	م م	hollon	ds	1/3/	13			PM				h	\mathbf{x}			1	13/13	
	÷ 1			<u> </u>								-++-	\sim	ᡛ			1.4.X.	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

86615-A

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Cameron Hollands

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 18/03/13
 /
 18/03/13

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

-Alana Nancy Zhang Chemist

Khian Morgan Rhian Morgan Reporting Supervisor

E26305K, St Ives

01/03/13

Additional Testing on 14 Soils

/

11/03/13

ohr Milen Hinoko Mivazaki

Chemist

M. Maugjeld

Matt Mansfield Approved Signatory

Envirolab Reference: Revision No:

86615-A R 00

E26305K,	St	lves
----------	----	------

6		
vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	86615-A-15
Your Reference		BH108
Depth		0.2-0.6
Date Sampled		28/02/2013
Type of sample		Soil
Date extracted	-	13/05/2013
Date analysed	-	15/03/2013
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	99

E26305K, St Ive	s
-----------------	---

svTRH (C10-C40) in Soil				
Our Reference:	UNITS 86615-			
Your Reference		BH108		
Depth		0.2-0.6		
Date Sampled		28/02/2013		
Type of sample		Soil		
Date extracted	-	13/03/2013		
Date analysed	-	13/03/2013		
TRHC 10 - C 14	mg/kg	<50		
TRHC 15 - C28	mg/kg	<100		
TRHC29 - C36	mg/kg	<100		
TRH>C10-C16	mg/kg	<50		
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50		
TRH>C16-C34	mg/kg	<100		
TRH>C34-C40	mg/kg	<100		
Surrogate o-Terphenyl	%	85		

PAHs in Soil		
Our Reference:	UNITS	86615-A-15
Your Reference		BH108
Depth		0.2-0.6
Date Sampled		28/02/2013
Type of sample		Soil
Date extracted	-	13/03/2013
Date analysed	-	14/03/2013
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	93

Organochlorine Pesticides in soil			
Our Reference:	UNITS	86615-A-15	
Your Reference		BH108	
Depth		0.2-0.6	
Date Sampled		28/02/2013	
Type of sample		Soil	
Date extracted	-	13/03/2013	
Date analysed	-	16/03/2013	
HCB	mg/kg	<0.1	
alpha-BHC	mg/kg	<0.1	
gamma-BHC	mg/kg	<0.1	
beta-BHC	mg/kg	<0.1	
Heptachlor	mg/kg	<0.1	
delta-BHC	mg/kg	<0.1	
Aldrin	mg/kg	<0.1	
Heptachlor Epoxide	mg/kg	<0.1	
gamma-Chlordane	mg/kg	<0.1	
alpha-chlordane	mg/kg	<0.1	
Endosulfan I	mg/kg	<0.1	
pp-DDE	mg/kg	<0.1	
Dieldrin	mg/kg	<0.1	
Endrin	mg/kg	<0.1	
pp-DDD	mg/kg	<0.1	
Endosulfan II	mg/kg	<0.1	
pp-DDT	mg/kg	<0.1	
Endrin Aldehyde	mg/kg	<0.1	
Endosulfan Sulphate	mg/kg	<0.1	
Methoxychlor	mg/kg	<0.1	
Surrogate TCMX	%	100	

f		
PCBs in Soil		
Our Reference:	UNITS 86615-A-1	
Your Reference		BH108
Depth		0.2-0.6
Date Sampled		28/02/2013
Type of sample		Soil
Date extracted	-	13/03/2013
Date analysed	-	16/03/2013
Arochlor 1016	mg/kg	<0.1
Arochlor 1221	mg/kg <0.1	
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Surrogate TCLMX	%	100

Acid Extractable metals in soil			
Our Reference:	UNITS 86615-A-1		
Your Reference		BH108	
Depth		0.2-0.6	
Date Sampled		28/02/2013	
Type of sample		Soil	
Date digested	-	13/03/2013	
Date analysed	-	13/03/2013	
Arsenic	mg/kg	80	
Cadmium	idmium mg/kg <0		
Chromium	mg/kg 19		
Copper	mg/kg	11	
Lead	mg/kg	110	
Mercury	mg/kg	<0.1	
Nickel	mg/kg	6	
Zinc	mg/kg	71	

E26305K, St Ives	
------------------	--

Moisture		
Our Reference:	UNITS	86615-A-15
Your Reference	BH108	
Depth		0.2-0.6
Date Sampled	28/02/20	
Type of sample	Soil	
Date prepared	-	13/03/13
Date analysed	-	14/03/13
Moisture	%	19

Asbestos ID - soils		
Our Reference:	UNITS	86615-A-15
Your Reference		BH108
Depth		0.2-0.6
Date Sampled		28/02/2013
Type of sample		Soil
Date analysed	-	18/03/2013
Sample mass tested	g	Approx 50g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
Trace Analysis	-	No respirable fibres detected

Metals in TCLP USEPA1311						
Our Reference:	UNITS	86615-A-1	86615-A-5	86615-A-7	86615-A-9	86615-A-11
Your Reference		BH101	BH103	BH104	BH105	BH106
Depth		0.0-0.1	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/03/2013	14/03/2013	14/03/2013	14/03/2013	14/03/2013
Date analysed	-	14/03/2013	14/03/2013	14/03/2013	14/03/2013	14/03/2013
pH of soil for fluid# determ.	pH units	5.9	5.4	5.6	5.5	7.6
pH of soil for fluid # determ. (acid)	pH units	1.6	1.6	1.6	1.6	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.0	5.0	5.0	5.0	5.0
Arsenic in TCLP	mg/L	0.3	0.2	1	[NA]	[NA]
Lead in TCLP	mg/L	0.07	[NA]	2.8	0.2	1.6
	T	1				1
Metals in TCLP USEPA1311						
Our Reference:	UNITS	86615-A-13	86615-A-15	86615-A-17	86615-A-19	86615-A-21
Your Reference		BH107	BH108	BH109 0.0-0.2	BH110	BH111
Depth Date Sampled		0.1-0.3 28/02/2013	0.2-0.6 28/02/2013	28/02/2013	0.0-0.1 28/02/2013	0.0-0.5 28/02/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	_	14/03/2013	14/03/2013	14/03/2013	14/03/2013	14/03/2013
Date analysed	-	14/03/2013	14/03/2013	14/03/2013	14/03/2013	14/03/2013
pH of soil for fluid# determ.	pH units	7.9	7.9	7.3	6.7	8.7
pH of soil for fluid # determ. (acid)	pH units	1.7	1.5	1.6	1.6	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	4.9	5.0	5.0	5.0	5.0
Arsenic in TCLP	mg/L	[NA]	0.1	0.7	1.1	0.4
Cadmium in TCLP	mg/L	[NA]	<0.01	[NA]	[NA]	[NA]
Chromium in TCLP	mg/L	[NA]	<0.01	[NA]	[NA]	[NA]
Lead in TCLP	mg/L	0.7	0.05	0.03	[NA]	0.2
Mercury in TCLP	mg/L	[NA]	<0.0005	[NA]	[NA]	[NA]
Nickel in TCLP	mg/L	[NA]	<0.02	[NA]	[NA]	[NA]

Client Reference: E26305K

Metals in TCLP USEPA1311					
Our Reference:	UNITS	86615-A-22	86615-A-24	86615-A-28	86615-A-29
Your Reference		BH111	BH112	BH114	BH114
Depth		0.05-0.1	0.0-0.05	0.0-0.1	0.2-0.4
Date Sampled		28/02/2013	28/02/2013	28/02/2013	28/02/2013
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	14/03/2013	14/03/2013	14/03/2013	14/03/2013
Date analysed	-	14/03/2013	14/03/2013	14/03/2013	14/03/2013
pH of soil for fluid# determ.	pH units	6.6	6.0	6.8	6.6
pH of soil for fluid # determ. (acid)	pH units	1.5	1.6	1.6	1.6
Extraction fluid used	-	1	1	1	1
pH of final Leachate	pH units	5.0	5.0	5.0	5.1
Arsenic in TCLP	mg/L	0.6	[NA]	0.4	1.9
Lead in TCLP	mg/L	[NA]	0.05	0.6	[NA]

PAHs in TCLP (USEPA 1311)		
Our Reference:	UNITS	86615-A-15
Your Reference		BH108
Depth		0.2-0.6
Date Sampled		28/02/2013
Type of sample		Soil
Date extracted	-	14/03/2013
Date analysed	-	15/03/2013
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
AcenaphtheneinTCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
FluorantheneinTCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(b+k)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene-TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i) perylene in TCLP	mg/L	<0.001
Surrogate p-Terphenyl-d14	%	124

Client Reference: E26305K, St Ives

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Org-012 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

	-	Clie	ent Reference	e: E	26305K, St Iv	res		•
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II % RPD		
Date extracted	-			13/03/2 013	[NT]	[NT]	LCS-7	13/03/2013
Date analysed	-			15/03/2 013	[NT]	[NT]	LCS-7	15/03/2013
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-7	111%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-7	111%
vTPHC6 - C10 less BTEX(F1)	mg/kg	25	Org-016	[NT]	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-7	114%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-7	108%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-7	105%
m+p-xylene	mg/kg	2	Org-016	2	[NT]	[NT]	LCS-7	115%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-7	116%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	91	[NT]	[NT]	LCS-7	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			13/03/2 013	[NT]	[TN]	LCS-5	13/03/2013
Date analysed	-			13/03/2 013	[NT]	[NT]	LCS-5	13/03/2013
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-5	89%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-5	90%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-5	79%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-5	89%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	[NT]	[NT]	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-5	90%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-5	79%
Surrogate o-Terphenyl	%		Org-003	85	[NT]	[NT]	LCS-5	84%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			13/03/2 013	[NT]	[NT]	LCS-5	13/03/2013
Date analysed	-			14/03/2 013	[NT]	[NT]	LCS-5	14/03/2013
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	82%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	86%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	83%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	84%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	87%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-5	80%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-5	93%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	93	[NT]	[NT]	LCS-5	89%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		,
Date extracted	-			13/03/2 013	[NT]	[NT]	LCS-5	13/03/2013
Date analysed	-			16/03/2 013	[NT]	[NT]	LCS-5	16/03/2013
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	80%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	91%
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	86%
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	80%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	87%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	87%
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	91%
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	81%
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	94%
EndosulfanII	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-5	88%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	90	[NT]	[NT]	LCS-5	86%

Client Reference: E26305K, St Ives									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PCBs in Soil						Base II Duplicate II % RPD			
Date extracted	-			13/03/2 013	[NT]	[NT]	LCS-5	13/03/2013	
Date analysed	-			16/03/2 013	[NT]	[NT]	LCS-5	16/03/2013	
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]	
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]	
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]	
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]	
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]	
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-5	84%	
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]	
Surrogate TCLMX	%		Org-006	90	[NT]	[NT]	LCS-5	92%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Acid Extractable metals in soil						Base II Duplicate II % RPD			
Date digested	-			13/03/2 013	[NT]	[NT]	LCS-1	13/03/2013	
Date analysed	-			13/03/2 013	[NT]	[NT]	LCS-1	13/03/2013	
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-1	93%	
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-1	92%	
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	98%	
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	98%	
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	95%	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-1	95%	
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	98%	
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	97%	

Client	Reference:
--------	------------

E26305K, St Ives

QUALITYCONTROL	UNITS	PQL	METHOD	Blank]			
Moisture				Diariit				
Date prepared	-			[NT]				
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	-			
Asbestos ID - soils								
Date analysed	-			[NT]				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP USEPA1311					511#	Base II Duplicate II % RPD		Recovery
Date extracted	-			18/03/2 013	86615-A-17	14/03/2013 14/3/2013	LCS-W1	18/03/2013
Date analysed	-			18/03/2 013	86615-A-17	14/03/2013 14/3/2013	LCS-W1	18/03/2013
Arsenic in TCLP	mg/L	0.05	Metals-020 ICP-AES	<0.05	86615-A-17	0.7 0.7 RPD:0	LCS-W1	108%
Cadmium in TCLP	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	102%
Chromium in TCLP	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	103%
Lead in TCLP	mg/L	0.03	Metals-020 ICP-AES	<0.03	86615-A-17	0.03 0.03 RPD:0	LCS-W1	100%
Mercury in TCLP	mg/L	0.0005	Metals-021 CV-AAS	<0.000 5	[NT]	[NT]	LCS-W1	96%
Nickel in TCLP	mg/L	0.02	Metals-020 ICP-AES	<0.02	[NT]	[NT]	LCS-W1	105%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHsin TCLP (USEPA 1311)						Base II Duplicate II % RPD		liceevery
Date extracted	-			14/03/2 013	[NT]	[NT]	LCS-W1	14/03/2013
Date analysed	-			15/03/2 013	[NT]	[NT]	LCS-W1	15/03/2013
Naphthalene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	84%
Acenaphthylene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	92%
Phenanthrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	93%
Anthracene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluoranthene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	93%
Pyrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	96%
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]

Envirolab Reference: 866 Revision No: R 0

	Client Reference: E26305K, St Ives									
QUALITY CONTROL PAHs in TCLP (USEPA 1311)	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery		
Chrysene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	88%		
Benzo(b+k)fluoranthene in TCLP	mg/L	0.002	Org-012 subset	<0.002	[NT]	[NT]	[NR]	[NR]		
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	90%		
Indeno(1,2,3-c,d)pyrene -TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]		
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]		
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]		
Surrogate p-Terphenyl- d14	%		Org-012	138	[NT]	[NT]	LCS-W1	107%		

Report Comments:

Asbestos in soil sample 86615-A-15:

Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Asbestos ID was analysed by Approved Identifier:	Paul Ching
Asbestos ID was authorised by Approved Signatory:	Lulu Guo

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Aileen Hie

From: Rhian Morgan Sent: Monday, 11 March 2013 10:13 AM To: Aileen Hie Subject: FW: Request for additinoal sample analysis: registration '86615 - E26305K, St lves' Regards, Rhian Morgan | Reporting Supervisor | Envirolab Services Pty Ltd Great Chemistry.Great Service 12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 mailto:rmorgan@envirolab.com.au | http://www.envirolab.com.au ----Original Message-----From: Cameron Hollands [mailto:chollands@jkgroup.net.au] Sent: Monday, 11 March 2013 10:14 To: Rhian Morgan Subject: Request for additinoal sample analysis: registration '86615 - E26305K, St Ives' Rhian, Please analyse the additional on standard TAT: ·∽ BH108(0.2-0.4m): package 12a Envirolab Ref: 86615A 1 (0.0-0.1): Arsenic & lead BH101 5 вн103 7 вн104 Due: 18/3/13 (0.0-0.2): Arsenic (0.0-0.2): Arsenic & lead Std TIA 9 BH105 (0.0-0.2): lead () BH106 (0.0-0.2): lead 13 BH107 (0.1-0.3): lead 7 BH109 (0.0-0.2): Arsenic & lead (0.0-0.1): Arsenic 19 BH110 (0.0-0.5): Arsenic & lead 2\ BH111 22 BH111 (0.05-0.1): Arsenic 24 BH112 (0.0-0.05): lead (0.0-0.1): Arsenic & lead 2% BH114 29 BH114 (0.2-0.4): Arsenic Regards, Cameron Hollands Environmental Scientist Environmental Investigation Services CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS Tel: 02 9888 5000 Fax: 02 9888 5001 PO Box 976 North Ryde BC NSW 1670

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

86620

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Cameron Hollands

Sample log in details:

Your Reference:E26305K, St IvesNo. of samples:4 WatersDate samples received / completed instructions received01/03/13 / 01/03/13

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 8/03/13
 / 7/03/13

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

-Alana Nancy Zhang

Chemist

Rhian Morgan Reporting Supervisor

Nick Sarlamis Inorganics Supervisor

Client Reference: E26305K, St Ives

vTRH(C6-C10)/BTEXN in Water					
Our Reference:	UNITS	86620-1	86620-2	86620-3	86620-4
Your Reference		MW101	MW102	DUP1	TS1
Date Sampled		28/02/2013	28/02/2013	28/02/2013	25/02/2013
Type of sample		Water	Water	Water	Water
Date extracted	-	01/03/2013	01/03/2013	01/03/2013	01/03/2013
Date analysed	-	02/03/2013	02/03/2013	02/03/2013	02/03/2013
TRHC6 - C9	µg/L	<10	<10	<10	[NA]
TRHC6 - C10	µg/L	<10	<10	<10	[NA]
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	[NA]
Benzene	µg/L	<1	<1	<1	88%
Toluene	µg/L	<1	<1	<1	91%
Ethylbenzene	µg/L	<1	<1	<1	94%
m+p-xylene	µg/L	<2	<2	<2	95%
o-xylene	µg/L	<1	<1	<1	96%
Naphthalene	µg/L	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	101	101	102	100
Surrogate toluene-d8	%	100	101	101	100
Surrogate 4-BFB	%	98	98	99	101

svTRH (C10-C40) in Water Our Reference: Your Reference Date Sampled Type of sample	UNITS	86620-1 MW101 28/02/2013 Water	86620-2 MW102 28/02/2013 Water	86620-3 DUP1 28/02/2013 Water
Date extracted	-	05/03/2013	05/03/2013	05/03/2013
Date analysed	-	05/03/2013	05/03/2013	05/03/2013
TRHC 10 - C 14	μg/L	<50	<50	<50
TRHC 15 - C28	μg/L	<100	<100	<100
TRHC29 - C36	μg/L	<100	<100	<100
TRH>C10 - C16	μg/L	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50
TRH>C16 - C34	µg/L	<100	<100	<100
TRH>C34 - C40	µg/L	<100	<100	<100
Surrogate o-Terphenyl	%	94	92	93

PAHs in Water			
Our Reference:	UNITS	86620-1	86620-2
Your Reference		MW101	MW102
Date Sampled		28/02/2013	28/02/2013
Type of sample		Water	Water
Date extracted	-	05/03/2013	05/03/2013
Date analysed	-	06/03/2013	06/03/2013
Naphthalene	µg/L	<1	<1
Acenaphthylene	µg/L	<1	<1
Acenaphthene	µg/L	<1	<1
Fluorene	µg/L	<1	<1
Phenanthrene	µg/L	<1	<1
Anthracene	μg/L	<1	<1
Fluoranthene	µg/L	<1	<1
Pyrene	µg/L	<1	<1
Benzo(a)anthracene	µg/L	<1	<1
Chrysene	μg/L	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2
Benzo(a)pyrene	μg/L	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5
Surrogate p-Terphenyl-d14	%	103	101

OCP in water - low level			
Our Reference:	UNITS	86620-1	86620-2
Your Reference		MW101	MW102
Date Sampled		28/02/2013	28/02/2013
Type of sample		Water	Water
Date extracted	-	05/03/2013	05/03/2013
Date analysed	-	05/03/2013	05/03/2013
HCB	µg/L	<0.02	<0.01
alpha-BHC	µg/L	<0.02	<0.01
gamma-BHC	µg/L	0.02	<0.01
beta-BHC	µg/L	<0.02	<0.01
Heptachlor	µg/L	<0.02	<0.01
delta-BHC	µg/L	<0.02	<0.01
Aldrin	µg/L	0.03	<0.01
Heptachlor Epoxide	µg/L	<0.02	<0.01
gamma-Chlordane	µg/L	<0.02	<0.01
alpha-Chlordane	µg/L	<0.02	<0.01
Endosulfan I	µg/L	0.30	<0.01
pp-DDE	µg/L	<0.02	<0.01
Dieldrin	µg/L	0.04	<0.01
Endrin	µg/L	<0.02	<0.01
pp-DDD	µg/L	<0.02	<0.01
Endosulfan II	μg/L	<0.02	<0.01
DDT	μg/L	<0.02	<0.01
Endrin Aldehyde	μg/L	<0.02	<0.01
Endosulfan Sulphate	μg/L	0.28	<0.01
Methoxychlor	μg/L	<0.02	<0.010
Surrogate TCMX	%	68	61

OP Pesticides in water LL			
Our Reference:	UNITS	86620-1	86620-2
Your Reference		MW101	MW102
Date Sampled		28/02/2013	28/02/2013
Type of sample		Water	Water
Date extracted	-	05/03/2013	05/03/2013
Date analysed	-	05/03/2013	05/03/2013
Diazinon	µg/L	<0.01	<0.01
Dimethoate	µg/L	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.01	<0.01
Ronnel	µg/L	<0.01	<0.01
Chlorpyriphos	µg/L	<0.01	<0.01
Fenitrothion	µg/L	<0.01	<0.01
Bromophos ethyl	µg/L	<0.01	<0.01
Ethion	µg/L	<0.01	<0.01
Surrogate TCMX	%	68	61

PCBs in Water - Low Level Our Reference: Your Reference Date Sampled Type of sample	UNITS	86620-1 MW101 28/02/2013 Water	86620-2 MW102 28/02/2013 Water
Date extracted	-	05/03/2013	05/03/2013
Date analysed	-	05/03/2013	05/03/2013
Arochlor 1016	μg/L	<0.1	<0.1
Arochlor 1221	µg/L	<0.1	<0.1
Arochlor 1232	µg/L	<0.1	<0.1
Arochlor 1242	µg/L	<0.1	<0.1
Arochlor 1248	µg/L	<0.1	<0.1
Arochlor 1254	μg/L	<0.1	<0.1
Arochlor 1260	μg/L	<0.1	<0.1
Surrogate TCLMX	%	68	61

HM in water - dissolved				
Our Reference:	UNITS	86620-1	86620-2	86620-3
Your Reference		MW101	MW102	DUP1
Date Sampled		28/02/2013	28/02/2013	28/02/2013
Type of sample		Water	Water	Water
Date prepared	-	04/03/2013	04/03/2013	04/03/2013
Date analysed	-	04/03/2013	04/03/2013	04/03/2013
Arsenic-Dissolved	µg/L	3	<1	3
Cadmium-Dissolved	µg/L	0.2	<0.1	0.2
Chromium-Dissolved	µg/L	3	1	2
Copper-Dissolved	µg/L	2	1	2
Lead-Dissolved	µg/L	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	3	1	3
Zinc-Dissolved	µg/L	63	35	64

Miscellaneous Inorganics			
Our Reference:	UNITS	86620-1	86620-2
Your Reference		MW101	MW102
Date Sampled		28/02/2013	28/02/2013
Type of sample		Water	Water
Date prepared	-	02/03/2013	02/03/2013
Date analysed	-	02/03/2013	02/03/2013
рН	pH Units	5.8	5.7
Electrical Conductivity	μS/cm	230	180
Calcium - Dissolved	mg/L	11	4.8
Magnesium - Dissolved	mg/L	3.3	2.0
Hardness	mgCaCO3 /L	42	20

Client Reference: E26305K, St Ives

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA 22nd ED 2510 and Rayment & Lyons.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II % RPD		Recovery
Date extracted	-			01/03/2 013	[NT]	[NT]	LCS-W1	01/03/2013
Date analysed	-			03/03/2 013	[NT]	[NT]	LCS-W1	03/03/2013
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	108%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	108%
TRHC6 - C10 less BTEX(F1)	µg/L	10	Org-016	10	[NT]	[NT]	[NR]	[NR]
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	107%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	107%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	107%
m+p-xylene	µg/L	2	Org-016	2	[NT]	[NT]	LCS-W1	109%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	108%
Naphthalene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	103	[NT]	[NT]	LCS-W1	99%
Surrogate toluene-d8	%		Org-016	101	[NT]	[NT]	LCS-W1	99%
Surrogate 4-BFB	%		Org-016	97	[NT]	[NT]	LCS-W1	95%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II % RPD		
Date extracted	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013
Date analysed	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013
TRHC 10 - C 14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	88%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	122%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	89%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	88%
TRH>C10 - C16 less Naphthalene (F2)	µg/L	50	Org-003	50	[NT]	[NT]	[NR]	[NR]
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	122%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	89%
Surrogate o-Terphenyl	%		Org-003	101	[NT]	[NT]	LCS-W1	89%

Client Reference:	ent Reference:	e:
-------------------	----------------	----

Client Reference: E26305K, St Ives										
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
PAHs in Water						Base II Duplicate II % RPD				
Date extracted	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013		
Date analysed	-			06/03/2 013	[NT]	[NT]	LCS-W1	06/03/2013		
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	89%		
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]		
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]		
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	93%		
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	88%		
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]		
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	88%		
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	89%		
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]		
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	84%		
Benzo(b+k)fluoranthene	µg/L	2	Org-012 subset	~2	[NT]	[NT]	[NR]	[NR]		
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	92%		
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]		
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]		
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]		
Benzo(a)pyrene TEQ	µg/L	5	Org-012 subset	[NT]	[NT]	[NT]	[NR]	[NR]		
Surrogate p-Terphenyl- d14	%		Org-012 subset	104	[NT]	[NT]	LCS-W1	102%		

Client Refer	ence:
--------------	-------

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water - low level						Base II Duplicate II %RPD		
Date extracted	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013
Date analysed	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013
НСВ	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
alpha-BHC	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	95%
gamma-BHC	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
beta-BHC	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	102%
Heptachlor	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	83%
delta-BHC	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
Aldrin	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	85%
Heptachlor Epoxide	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	107%
gamma-Chlordane	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
Endosulfan I	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
pp-DDE	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	111%
Dieldrin	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	111%
Endrin	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	114%
pp-DDD	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	112%
Endosulfan II	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
DDT	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	µg/L	0.01	Org-005	<0.01	[NT]	[NT]	LCS-W1	108%
Methoxychlor	µg/L	0.01	Org-005	<0.010	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	92	[NT]	[NT]	LCS-W1	73%

		Clie	ent Referenc	e: E	26305K, St Iv	res		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
OP Pesticides in water					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013
Date analysed	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013
Diazinon	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Dimethoate	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Ronnel	µg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	μg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	105%
Fenitrothion	μg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	103%
Bromophos ethyl	μg/L	0.01	Org-008	<0.01	[NT]	[NT]	[NR]	[NR]
Ethion	μg/L	0.01	Org-008	<0.01	[NT]	[NT]	LCS-W1	98%
Surrogate TCMX	%		Org-008	92	[NT]	[NT]	LCS-W1	83%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
	er in e			Diam	Sm#		opino onim	Recovery
PCBs in Water - Low Level						Base II Duplicate II % RPD		
Date extracted	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013
Date analysed	-			05/03/2 013	[NT]	[NT]	LCS-W1	05/03/2013
Arochlor 1016	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	LCS-W1	96%
Arochlor 1260	µg/L	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	92	[NT]	[NT]	LCS-W1	82%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		
Date prepared	-			04/03/2 013	86620-3	04/03/2013 04/03/2013	LCS-W1	04/03/2013
Date analysed	-			04/03/2 013	86620-3	04/03/2013 04/03/2013	LCS-W1	04/03/2013
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	86620-3	3 3 RPD:0	LCS-W1	88%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	86620-3	0.2 0.2 RPD:0	LCS-W1	89%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	86620-3	2 2 RPD:0	LCS-W1	86%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	86620-3	2 2 RPD:0	LCS-W1	86%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	86620-3	<1 <1	LCS-W1	87%
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	86620-3	<0.05 [N/T]	LCS-W1	96%

		Clie	nt Referenc	e: Eź	26305K, St Iv	/es		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	86620-3	3 3 RPD:0	LCS-W1	89%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	86620-3	64 64 RPD:0	LCS-W1	84%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II % RPD		
Date prepared	-			04/03/2 013	86620-1	02/03/2013 02/03/2013	LCS-W1	04/03/2013
Date analysed	-			04/03/2 013	86620-1	02/03/2013 02/03/2013	LCS-W1	04/03/2013
pН	pH Units		Inorg-001	[NT]	86620-1	5.8 [N/T]	LCS-W1	102%
Electrical Conductivity	µS/cm	1	Inorg-002	<1	86620-1	230 [N/T]	LCS-W1	106%
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	86620-1	11 11 RPD:0	LCS-W1	103%
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	86620-1	3.3 3.4 RPD:3	LCS-W1	102%
Hardness	mgCaCO 3/L	3		3.0	86620-1	42 43 RPD:2	[NR]	[NR]

Report Comments:

OCP (in water)PQL has been raised due to interference from analytes(other than those being tested)in the sample/s.

Asbestos ID was analysed by Approved Identifier:	Not applicable for this job
Asbestos ID was authorised by Approved Signatory:	Not applicable for this job

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Client:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670	ph: 02 9888 5000 Fax: 02 9888 5001
Attention: Cameron Hollands	
Sample log in details: Your reference: Envirolab Reference: Date received: Date results expected to be reported:	E26305K, St Ives 86620 01/03/13 8/03/13
Samples received in appropriate condition for analysis:	YES

	120
No. of samples provided	4 Waters
Turnaround time requested:	Standard
Temperature on receipt	Cool
Cooling Method:	Ice Pack
Sampling Date Provided:	YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1

TO: Envirolab S 12 Ashley S Phone: (02) Fax: (02) 99 Attention: A Date Results Project: Pro	t, Chatswo 9910 620 10 6201 Nileen s Required:	5 Ju			SAMPLE AND CHAIN OF CUSTODY FORM Rear 115 Windequarie Particular Macquarie Particular Phone: (02) Star: (02) 983 EIS Job Number: E & 5305K Sheet \$ / \$ Tests Beguired Sample Prese						EIS Job Number: E 2,6305K Sheet \$/ \$							FROM: Environmental Investigation Services Rear 115 Wicks Road Macquarie Park NSW 2113 Phone: (02) 9888 5000 Fax: (02) 9888 5004 Contact: Coveron Hollands Sample Preservation: In esky on ice	
Location: ട Sampler: എ									╞		6		ß					ľ	
Date	Time Sampled	Locatio	on	Sample/ Borehole Number	Sample Co	Sample Container (ppm/ Odour) Sample		n	Combo 3	Heavy metals	TPH/BTEX	4060 PCL	PAHs	pH / EC / Hardness	01/00	SEX		Comments/Detection Limits Required	
28/2/13	РM	MWIC	») -	- 1	3 x ½ L Amb 2 x BTEX 1 x HDPE Plas	Vials	1	water			X	$\boldsymbol{\lambda}$	χ	X	X	X			Enviroleb Straices Enviroleb Straices 12 Ashley St Chetswood NSW 2067
× 1	• •	MUIC	2-	-2	١,	/ ,	1	ţ ı			X	×	x	x	X	x			Ph: (02) 5810 6200 Job No: 8662.0 Date Received: 1/3/13
× 、	~ ~	DUP	1	3	M.	()	1	· /			X	X							Time Received: // / SO Received by: JH/C Teme:CodyAmbient
25/2/13)	1 5	1	4	1 ~ BTBX ,	nä ((c 1									X		Ceoling: Ioskerpet Seeurity: Intac/Broken/None
										1									
Relinquished By:Date: 1/3/13Received By:Cameson hallandsTime: PMHiRelinquished By:Date:Received By:									Remarks: All analysis PQLs to ANZECC (2000) Detect $\beta \subset Bs$, $B\beta \neq O \subset \longrightarrow All$ at low										

.

....

Australian Government

National Measurement Institute

REPORT OF ANALYSIS

						Page: 1 of 3
					Report	No. RN961074
Client : Environment	al Investigation	n Services		Job No.	: ENVI78	/130304
115 WICKS	ROAD			Quote No.	: QT-017	'83
MACQUARI	E PARK NSW	2113		Order No.	: E26305	5K
				Date Sample	ed :	
				Date Receiv	ved : 4-MAR-	2013
Attention : CAMERON F	HOLLANDS			Sampled By	: CLIENT	
Project Name : PROP. RACF	:			1 3		
Your Client Services Manage		ICHARD COGHLAN		Phone	: (02) 94	490161
Lab Reg No. Sample	Ref		Sample Descripti	on		
N13/005751 DUP3			SOIL ST.IVES PR		RACF JOB: E2	6305K
Lab Reg No.		N13/005751				
Sample Reference		DUP3				_
	Units					Method
Polycyclic Aromatic Hydroca	rbons					
Naphthalene	mg/kg	< 0.5				NGCMS_1111
Acenaphthylene	mg/kg	< 0.5				NGCMS_1111
Acenaphthene	mg/kg	< 0.5				
Fluorene	mg/kg	< 0.5				
Phenanthrene	mg/kg	< 0.5				NGCMS_1111
Anthracene	mg/kg	< 0.5				NGCMS_1111
Fluoranthene	mg/kg	< 0.5				NGCMS_1111
Pyrene	mg/kg	< 0.5				NGCMS_1111
Benz(a)anthracene	mg/kg	< 0.5				NGCMS_1111
Chrysene	mg/kg	< 0.5				NGCMS_1111
Benzo(b)&(k)fluoranthene	mg/kg	<1				NGCMS_1111
Benzo(a)pyrene	mg/kg	< 0.5				NGCMS_1111
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.5				NGCMS_1111
Dibenzo(a,h)anthracene	mg/kg	< 0.5				NGCMS_1111
Benzo(g,h,i)perylene	mg/kg	< 0.5				NGCMS_1111
Surrogate: TER-D14	%REC	104				NGCMS_1111
BTEX						
Benzene	mg/kg	< 0.5				NGCMS_1121
Toluene	mg/kg	< 0.5				NGCMS_1121
Ethyl Benzene	mg/kg	< 0.5				NGCMS_1121
m, p - Xylene	mg/kg	< 1				NGCMS_1121
o - Xylene	mg/kg	< 0.5				NGCMS_1121
Surrogate: TOL-D8	%REC	103				NGCMS_1121
Total Petroleum Hydrocarbor			1			
TPH C6 - C9	mg/kg	< 25				NGCMS_1121
TPH C10 - C14	mg/kg	< 50				NGCMS_1112
TPH C15 - C28	mg/kg	< 100				NGCMS_1112
TPH C29 - C36	mg/kg	< 100				NGCMS_1112
Surrogate: TOL-D8	%REC	103				NGCMS_1121
Dates			1			
Date extracted		5-MAR-2013		I		
		5 11 2010				1

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 0297 www.measurement.gov.au

REPORT OF ANALYSIS

Page: 2 of 3 Report No. RN961074

Lab Reg No.		N13/005751		
Sample Reference		DUP3		
	Units			Method
Dates				
Date analysed		6-MAR-2013		

Luke Baker, Analyst Organics - NSW Accreditation No. 198

11-MAR-2013

Lab Reg No.		N13/005751	
Sample Reference		DUP3	
	Units		Method
Trace Elements	·		
Arsenic	mg/kg	660	NT2_49
Cadmium	mg/kg	< 0.5	NT2_49
Chromium	mg/kg	21	NT2_49
Copper	mg/kg	190	NT2_49
Lead	mg/kg	260	NT2_49
Mercury	mg/kg	< 0.2	NT2_49
Nickel	mg/kg	11	NT2_49
Zinc	mg/kg	230	NT2_49
Total Solids	%	80.0	NT2_49

by he

Ling Shuang Lu, Analyst Inorganics - NSW Accreditation No. 198

11-MAR-2013

All results are expressed on a dry weight basis.

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 0297 www.measurement.gov.au

National Measurement Institute

REPORT OF ANALYSIS

Page: 3 of 3 Report No. RN961074

Accredited for compliance with ISO/IEC 17025. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN961057 RN961065

105 Delhi Road, North Ryde NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 0297 www.measurement.gov.au

Australian Government

National Measurement Institute

SAMPLE RECEIPT NOTIFICATION

To: Environmental Investigation Services Attn: CAMERON HOLLANDS From: Laboratory Services Unit Date: 5-MAR-2013 Email:

Page: 1 of 1

If you have any queries or wish to make any adjustments to analyses requested, please contact Susanne Neuman immediately on 02 9449 0181

Project: Order No.: NMI Job No: Total Number of Date received by Estimated Report	Samples: 1	K 130304 2013
LRNs	Sample Ref	Description
N13/005751	DUP3	SOIL ST.IVES PROJECT: PROP. RACF JOB: E26305K

Comments:	
ALL OK	
Samples received	Chilled
NMI quotation number provided Complete documentation received	Not Applicable Yes
	Neuman on 02 9449 0181 to clarify. Note: incomplete or unclear required testing will delay the start of the analysis work

Unless advised otherwise sample analysis will commence regardless of integrity issues Relevant non-conformances will be recorded on the final report.

105 Delhi Road, North Ryde, NSW 2113 Tel: + 61 2 9449 0111 Fax: + 61 2 9449 2097 www.measurement.gov.au

				SAL		AND CHA			IST		FOR	204			D	ine	4	13
TO:		-		SAI							FUF	X IVI	FROM:		-			
Envirolab S 12 Ashley S		es Pty Ltd			EIS J	ob Number:	εZ	630	5K					intentari	nvean	gation 5	ervices	
Chatswood		2067											1	15 Wic Jarie Pa			3	
Phone: (02)					Date F	Results Requir	ed:	Sσ	ays	in the second se				: (02) 9				
ax: (02) 99	91062	01							1				Fax: (02) 988	8 500)4		
Attention: A	lileen									2	3	2	Conta	ct:		. 1	lollar	6
Project: Pri	00. K	RACF					1	Sheet		~	/ ~		Samo	e Prese			nun	ns
ocation: 🕄														iky on id				
Sampler: (Τe	sts R	equire	ed			,	V			
		Borehole/					9							/d	SO	6 9	Va Ca	4
Date	Lab	Sample	Depth	Sample Container	PID	Sample	Combo	Combo 6a	Combo 13	Metals	TPH	BTEX	PAHs	OCP/OPP/ PCBs	Asbestos	TCLP 6 Metals	TCLP PAHs	ME
Sampled	Ref:	Number	(m)	Container		Description	Cor	Con	Con	8	1000	8	<u>م</u>	OCF	Ast	D Z	Ηd	Package #3
	26	BHII3	0.0-	Glass jar +	0	SILTY SANDY	1											
	10000	Units	0.3-	Asb Bag Glass jar +	-	GRAVEL SILTY CLAY	-	-	_		-							
	27	V	0.5	A sb Bag Glass jar +			-	1			_						-	-
	28		0.1	Asb Bag	0	Fi4		X										
	29		0.2-4	Glass jar +	0	SiLTY CLAY												X
	30	Dup		Glass jar + Asb Bag	-	Sail												X
	3	-	-	Glass jar +	-	Soil	N1	3/	00	57	51	-			-	-		
	7	Jup 2		Glass jar +	-	A second second						2:						
	-	DUP3	-	Asb Bag	-	Soil												X
	32	FBI	-	Glass jar + Ash Bag	-	Sand						X						
	33	RSI	-	Glass jar + A sb-Bog	-	water						\times						
		The second	-	Glass jar +		Lanna de		-		-								
		751		Asb Bag Glass jar +				-					-					
		MINIO		All Bas			-											-
		MWIOZ	~	Glass jar + Asb-Bag														
	_			Glass jar + Asb Bag														
				Glass jar +														
				Asb Bag Glass jar +			1	-					-					-
				Asb Bag Glass jar +		-			_									-
				Asb Bag								_					•	
				Glass jar + Asb Bag														
				Glass jar +														
				Asb Bag Glass jar +	-			-					-			-		
				Asb Bag Glass jar +			-			_	-						-	
	-			Asb Bag				_										-
				Glass jar + Asb Bag									1			1.24	-	
				Glass jar +														
				Asb Bag Glass jar +			-						-					
				Asb Bag Glass jar +			-	-		-								
			8	Asb Bag													-	
				Glass jar + Asb Bag														
amarks (con	nments	detection lin	nits required):		1			P	•	0	1-	هي ر	+ 7	Fra.	10	. 0	4.
flea	se	Jen C	CD	Up S) 7	60 N	M	/	10	r I	Phi	elles	e F	+ 5	111	1/56	x,[#	HM
lelinquished I	By:			Date:			Time	2			Recei	ved By	Rin	el tro	J	15	15	/
Camer.	01	hollano	ls	1/3/	13		P	M				h	. XA			1	3/13	
						KE	ĊC	EI	VI	20		t	W VI	Q.			4.1	
zen	-01	ughe	201 5	Soph	2			MAR				17	1					
			6	20			1.	VIAD	6111			201						

ENVI78/130304

QUALITY ASSURANCE REPORT

Client:

Environmental Investigation Services

NMI QA Report No:

Sample Matrix:

Solid

Analyte	Method	LOR	Blank	Sam	ple Duplicate	Recoveries		
				Sample	Duplicate	RPD	LCS	Matrix Spike
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%
Organics Section								
BTEX								
Benzene	NGCMS_1121	0.5	<0.5	NA	NA	NA	89	NA
Toluene	NGCMS_1121	0.5	<0.5	NA	NA	NA	86	NA
Ethyl Benzene	NGCMS_1121	0.5	<0.5	NA	NA	NA	85	NA
m, p - Xylene	NGCMS_1121	1	<1	NA	NA	NA	86	NA
o-Xylene	NGCMS_1121	0.5	<0.5	NA	NA	NA	84	NA
TPH								
ТРН С6-С9	NGCMS_1121	25	<25	NA	NA	NA	86	NA
TPH C10-C14	NGCMS_1112	50	<50	NA	NA	NA	102	NA
TPH C15-C28	NGCMS_1112	100	<100	NA	NA	NA	104	NA
TPH C29-C36	NGCMS_1112	100	<100	NA	NA	NA	-	NA
Surrogate: TOL-D8	NGCMS_1121	-	-	NA	NA	NA	99	NA
PAH								
Naphthalene	NGCMS_1111	0.5	<0.5	NA	NA	NA	100	NA
Acenaphthylene	NGCMS_1111	0.5	<0.5	NA	NA	NA	-	NA
Acenaphthene	NGCMS_1111	0.5	<0.5	NA	NA	NA	-	NA
Fluorene	NGCMS_1111	0.5	<0.5	NA	NA	NA	100	NA
Phenanthrene	NGCMS_1111	0.5	<0.5	NA	NA	NA	100	NA
Anthracene	NGCMS_1111	0.5	<0.5	NA	NA	NA	-	NA
Fluoranthene	NGCMS_1111	0.5	<0.5	NA	NA	NA	-	NA
Pyrene	NGCMS_1111	0.5	<0.5	NA	NA	NA	-	NA
Benz[a]anthracene	NGCMS_1111	0.5	<0.5	NA	NA	NA	-	NA
Chrysene	NGCMS_1111	0.5	<0.5	NA	NA	NA	100	NA
Benzo[b]&[k]fluoranthene	NGCMS_1111	1	<1	NA	NA	NA	-	NA
Benzo[a]pyrene	NGCMS_1111	0.5	<0.5	NA	NA	NA	109	NA
Indeno[1_2_3-cd]pyrene	NGCMS_1111	0.5	<0.5	NA	NA	NA	-	NA
Dibenz[ah]anthracene	NGCMS_1111	0.5	<0.5	NA	NA	NA	91	NA
Benzo[ghi]perylene	NGCMS_1111	0.5	<0.5	NA	NA	NA	-	NA
Surrogate: TER-D14	NGCMS_1111	-	-	NA	NA	NA	103	NA

Results expressed in percentage (%) or mg/kg wherever appropriate. Acceptable Spike recovery is 70-130% (BTEX and TPH C6-C9); 50-150% (PAH and TPH C10-C36)

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference

Signed:

Date:

10,

Danny Slee **Organics Manager, NMI-North Ryde** 8/03/2013

Australian Government

National Measurement Institute

QUALITY ASSURANCE REPORT

Client: Environmental Investigation Services

NMI QA Report No: ENVI78/130304T1

Sample Matrix: Soil

Analyte	Method	LOR	Blank		Duplicates	Re	Recoveries	
				Sample	Duplicate	RPD	LCS	Matrix Spike
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%
Inorganics Section								N13/005751
Arsenic	NT2.49	0.5	< 0.5	640	680	6	101	94
Cadmium	NT2.49	0.5	< 0.5	NA	NA	NA	96	NA
Chromium	NT2.49	0.5	<0.5	20	21	5	98	89
Copper	NT2.49	0.5	< 0.5	170	210	21	100	93
Lead	NT2.49	0.5	< 0.5	250	260	4	103	93
Mercury	NT2.49	0.2	< 0.2	NA	NA	NA	98	NA
Nickel	NT2.49	0.5	< 0.5	13	8.8	39	99	90
Zinc	NT2.49	0.5	<0.5	220	240	9	91	96

Filename =

K:\Inorganics\Quality System\QA Reports\TE\QAR2013\Soil\

Legend:

Acceptable recovery is 75-120%.

Acceptable RPDs on duplicates is 44% at concentrations >5 times LOR. Greater RPD may be expected at <5 times LOR. ND = Not Determined

NA = Not Applicable

LOR = Limit Of Reporting

RPD = Relative Percent Difference

LCS = Laboratory Control Sample.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable. **: reference value not available

Comments:

Results greater than ten times LOR have been rounded to two significant figures.

This report shall not be reproduced except in full.

Signed:

Dr Michael Wu Inorganics, NMI-North Ryde 11/03/2013

Date:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

114380

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Cameron Hollands

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received E26305K, St Ives 1 water , 32 soils 08/08/14 / 08/08/14

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 15/08/14
 / 14/08/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

Client Reference: E26305K, St Ives

Organochlorine Pesticides in soil						
Our Reference:	UNITS	114380-1	114380-2	114380-5	114380-7	114380-9
Your Reference		DUPA	DUPB	BH201	BH202	BH203
Depth		-	-	0.1-0.3	0-0.2	0-0.15
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	0.2	<0.1	0.1	<0.1
Dieldrin	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	76	76	74	76	75

Organochlorine Pesticides in soil						
Our Reference:	UNITS	114380-10	114380-12	114380-13	114380-15	114380-17
Your Reference		BH203	BH204	BH205	BH206	BH206
Depth		0.2-0.4	0.1-0.3	0-0.2	0-0.15	0.6-0.8
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	74	78	73	74	85

Organochlorine Pesticides in soil						
Our Reference:	UNITS	114380-19	114380-20	114380-21	114380-23	114380-24
Your Reference		BH207	BH207	BH208	BH208	BH209
Depth		0.4-0.6	0.8-1.0	0-0.15	0.5-0.7	0-0.15
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	76	73	75	76	75

Organochlorine Pesticides in soil						
Our Reference:	UNITS	114380-25	114380-26	114380-28	114380-29	114380-30
Your Reference		BH209	BH210	BH210	BH211	BH211
Depth		0.2-0.4	0-0.1	0.5-0.7	0-0.1	0.2-0.4
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	0.2	<0.1	0.1	<0.1
Dieldrin	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	75	77	75	75	75

Organochlorine Pesticides in soil			
Our Reference:	UNITS	114380-32	114380-33
Your Reference		BH212	BH212
Depth		0.2-0.4	0.6-0.8
Date Sampled		07/08/2014	07/08/2014
Type of sample		Soil	Soil
Date extracted	-	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014
HCB	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	3.0	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Surrogate TCMX	%	75	75

Acid Extractable metals in soil						
Our Reference:	UNITS	114380-1	114380-2	114380-5	114380-7	114380-9
Your Reference		DUPA	DUPB	BH201	BH202	BH203
Depth		-	-	0.1-0.3	0-0.2	0-0.15
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Datedigested	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Arsenic	mg/kg	5	180	1,600	110	30
Lead	mg/kg	240	230	39	880	110

Acid Extractable metals in soil						
Our Reference:	UNITS	114380-10	114380-12	114380-13	114380-15	114380-17
Your Reference		BH203	BH204	BH205	BH206	BH206
Depth		0.2-0.4	0.1-0.3	0-0.2	0-0.15	0.6-0.8
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Arsenic	mg/kg	10	1,200	10	130	4
Lead	mg/kg	24	49	280	94	37

Acid Extractable metals in soil						
Our Reference:	UNITS	114380-19	114380-20	114380-21	114380-23	114380-24
Your Reference		BH207	BH207	BH208	BH208	BH209
Depth		0.4-0.6	0.8-1.0	0-0.15	0.5-0.7	0-0.15
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Arsenic	mg/kg	170	60	150	<4	120
Lead	mg/kg	1,600	36	270	98	180
Acid Extractable metals in soil						
Our Reference:	UNITS	114380-25	114380-26	114380-28	114380-29	114380-30
Your Reference		BH209	BH210	BH210	BH211	BH211
Depth		0.2-0.4	0-0.1	0.5-0.7	0-0.1	0.2-0.4
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Arsenic	mg/kg	20	220	8	370	4
Lead	mg/kg	13	340	28	2,000	20

Acid Extractable metals in soil			
Our Reference:	UNITS	114380-32	114380-33
Your Reference		BH212	BH212
Depth		0.2-0.4	0.6-0.8
Date Sampled		07/08/2014	07/08/2014
Type of sample		Soil	Soil
Datedigested	-	11/08/2014	11/08/2014
Date analysed	-	11/08/2014	11/08/2014
Arsenic	mg/kg	<4	<4
Lead	mg/kg	79	9

E26305K, St Ives

Moisture						
Our Reference:	UNITS	114380-1	114380-2	114380-5	114380-7	114380-9
Your Reference		DUPA	DUPB	BH201	BH202	BH203
Depth		-	-	0.1-0.3	0-0.2	0-0.15
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
Moisture	%	21	4.6	19	8.7	9.0
Moisture						
Our Reference:	UNITS	114380-10	114380-12	114380-13	114380-15	114380-17
Your Reference		BH203	BH204	BH205	BH206	BH206
Depth		0.2-0.4	0.1-0.3	0-0.2	0-0.15	0.6-0.8
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
Moisture	%	16	18	6.5	7.7	22
Moisture						
Our Reference:	UNITS	114380-19	114380-20	114380-21	114380-23	114380-24
Your Reference		BH207	BH207	BH208	BH208	BH209
Depth		0.4-0.6	0.8-1.0	0-0.15	0.5-0.7	0-0.15
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
Moisture	%	15	22	7.1	21	5.2
Moisture						
Our Reference:	UNITS	114380-25	114380-26	114380-28	114380-29	114380-30
Your Reference		BH209	BH210	BH210	BH211	BH211
Depth		0.2-0.4	0-0.1	0.5-0.7	0-0.1	0.2-0.4
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/08/2014	11/08/2014	11/08/2014	11/08/2014	11/08/2014
Date analysed	-	12/08/2014	12/08/2014	12/08/2014	12/08/2014	12/08/2014
Moisture	%	22	4.3	21	8.4	22
Moisture				ן		
Our Reference:	UNITS	114380-32	11/200 22			
	UNITS		114380-33			
Your Reference		BH212	BH212			
Depth		0.2-0.4	0.6-0.8			
Date Sampled		07/08/2014	07/08/2014			
Type of sample		Soil	Soil			
Date prepared	-	11/08/2014	11/08/2014			
Date analysed	-	12/08/2014	12/08/2014			
		1	1	1		

Moisture

%

13

21

OCP in water		
Our Reference:	UNITS	114380-3
Your Reference		Rinsate
Depth		-
DateSampled		07/08/2014
Type of sample		Water
Date extracted	-	12/08/2014
Date analysed	-	12/08/2014
НСВ	µg/L	<0.2
alpha-BHC	µg/L	<0.2
gamma-BHC	µg/L	<0.2
beta-BHC	µg/L	<0.2
Heptachlor	µg/L	<0.2
delta-BHC	µg/L	<0.2
Aldrin	µg/L	<0.2
Heptachlor Epoxide	µg/L	<0.2
gamma-Chlordane	µg/L	<0.2
alpha-Chlordane	µg/L	<0.2
Endosulfan I	µg/L	<0.2
pp-DDE	µg/L	<0.2
Dieldrin	µg/L	<0.2
Endrin	µg/L	<0.2
pp-DDD	µg/L	<0.2
Endosulfan II	µg/L	<0.2
pp-DDT	µg/L	<0.2
Endrin Aldehyde	µg/L	<0.2
Endosulfan Sulphate	µg/L	<0.2
Methoxychlor	µg/L	<0.2
Surrogate TCMX	%	92

Metals in Water - Dissolved		
Our Reference:	UNITS	114380-3
Your Reference		Rinsate
Depth		-
Date Sampled		07/08/2014
Type of sample		Water
Date digested	-	11/08/2014
Date analysed	-	12/08/2014
Arsenic - Dissolved	mg/L	<0.05
Lead - Dissolved	mg/L	<0.03

MethodID	Methodology Summary
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date extracted	-			11/08/2 014	114380-1	11/08/2014 11/08/2014	114380-2	11/08/2014
Date analysed	-			12/08/2 014	114380-1	12/08/2014 12/08/2014	114380-2	12/08/2014
HCB	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	89%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	102%
Heptachlor	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	91%
delta-BHC	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	98%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	92%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
Endosulfanl	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	91%
Dieldrin	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	99%
Endrin	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	60%
pp-DDD	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	93%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	114380-2	97%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	114380-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	75	114380-1	76 77 RPD:1	114380-2	73%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals n soil					Grim	Base II Duplicate II % RPD		riceovery
Date digested	-			11/08/2 014	114380-1	11/08/2014 11/08/2014	114380-2	11/08/2014
Date analysed	-			11/08/2 014	114380-1	11/08/2014 11/08/2014	114380-2	11/08/2014
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	114380-1	5 5 RPD:0	114380-2	130%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	114380-1	240 240 RPD:0	114380-2	#
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water						Base II Duplicate II %RPD		
Date extracted	-			12/08/2 014	[NT]	[NT]	LCS-W	12/08/2014
Date analysed	-			12/08/2 014	[NT]	[NT]	LCS-W	12/08/2014
HCB	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	108%
gamma-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
beta-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	103%
Heptachlor	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	106%
delta-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Aldrin	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	112%
Heptachlor Epoxide	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	109%
gamma-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfanl	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDE	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	107%
Dieldrin	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	106%
Endrin	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	103%
pp-DDD	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	111%
Endosulfan II	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDT	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W	117%
Methoxychlor	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	83	[NT]	[NT]	LCS-W	87%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#		icate results	Spike Sm#	Spike % Recovery
Metals in Water - Dissolved						Base	ell Duplicatell %RPD		
Date digested	-			11/08/2 014	[NT]		[NT]	LCS-W	11/08/201
Date analysed	-			12/08/2 014	[NT]		[NT]	LCS-W	12/08/201
Arsenic - Dissolved	mg/L	0.05	Metals-020 ICP-AES	<0.05	[NT]		[NT]	LCS-W	101%
Lead - Dissolved	mg/L	0.03	Metals-020 ICP-AES	<0.03	[NT]		[NT]	LCS-W	102%
QUALITY CONTROL	UNITS	3	Dup.Sm#		Duplicate		Spike Sm#	Spike % Reco	overy
Organochlorine Pesticides in soil	5			Base+[Duplicate+%RP	D			
Date extracted	-	1	14380-19	11/08/2	014 11/08/201	4	LCS-6	11/08/2014	
Date analysed	-	1	114380-19		014 12/08/201	4	LCS-6	12/08/201	4
HCB	mg/kg	g 1	14380-19		<0.1 <0.1		[NR]	[NR]	
alpha-BHC	mg/kg	g 1	14380-19	<0.1 <0.1			LCS-6	92%	
gamma-BHC	mg/kg	g 1	14380-19	<0.1 <0.1			[NR]	[NR]	
beta-BHC	mg/k	g 1	14380-19	<0.1 <0.1			LCS-6	107%	
Heptachlor	mg/k	g 1	14380-19	<0.1 <0.1			LCS-6	89%	
delta-BHC	mg/k	g 1	14380-19	<0.1 <0.1			[NR]	[NR]	
Aldrin	mg/kg	g 1	14380-19		<0.1 <0.1		LCS-6	100%	
Heptachlor Epoxide	mg/k	g 1	14380-19		<0.1 <0.1		LCS-6	96%	
gamma-Chlordane	mg/k	g 1	14380-19		<0.1 <0.1		[NR]	[NR]	
alpha-chlordane	mg/k	g 1	14380-19		<0.1 <0.1		[NR]	[NR]	
Endosulfanl	mg/k	g 1	14380-19		<0.1 <0.1		[NR]	[NR]	
pp-DDE	mg/k	g 1	14380-19		<0.1 <0.1		LCS-6	94%	
Dieldrin	mg/k	g 1	14380-19		<0.1 <0.1		LCS-6	108%	
Endrin	mg/k	g 1	14380-19		<0.1 <0.1		LCS-6	98%	
pp-DDD	mg/k	g 1	14380-19		<0.1 <0.1		LCS-6	104%	
Endosulfan II	mg/k	g 1	14380-19		<0.1 <0.1		[NR]	[NR]	
pp-DDT	mg/k	g 1	14380-19		<0.1 <0.1		[NR]	[NR]	
Endrin Aldehyde	mg/k	g 1	14380-19		<0.1 <0.1		[NR]	[NR]	
Endosulfan Sulphate	mg/k	g 1	14380-19		<0.1 <0.1		LCS-6	119%	
Methoxychlor	mg/k	g 1	14380-19		<0.1 <0.1		[NR]	[NR]	
Surrogate TCMX	%	1	14380-19	76	75 RPD:1		LCS-6	75%	

		Client Reference	ce: E26305K, St Ives		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	114380-19	11/08/2014 11/08/2014	LCS-10	11/08/2014
Date analysed	-	114380-19	11/08/2014 11/08/2014	LCS-10	11/08/2014
Arsenic	mg/kg	114380-19	170 160 RPD:6	LCS-10	97%
Lead	mg/kg	114380-19	1600 1200 RPD: 29	LCS-10	99%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date extracted	-	114380-32	11/08/2014 11/08/2014		
Date analysed	-	114380-32	12/08/2014 12/08/2014		
HCB	mg/kg	114380-32	<0.1 <0.1		
alpha-BHC	mg/kg	114380-32	<0.1 <0.1		
gamma-BHC	mg/kg	114380-32	<0.1 <0.1		
beta-BHC	mg/kg	114380-32	<0.1 <0.1		
Heptachlor	mg/kg	114380-32	<0.1 <0.1		
delta-BHC	mg/kg	114380-32	<0.1 <0.1		
Aldrin	mg/kg	114380-32	<0.1 <0.1		
Heptachlor Epoxide	mg/kg	114380-32	<0.1 <0.1		
gamma-Chlordane	mg/kg	114380-32	<0.1 <0.1		
alpha-chlordane	mg/kg	114380-32	<0.1 <0.1		
Endosulfanl	mg/kg	114380-32	<0.1 <0.1		
pp-DDE	mg/kg	114380-32	3.0 2.4 RPD:22		
Dieldrin	mg/kg	114380-32	<0.1 <0.1		
Endrin	mg/kg	114380-32	<0.1 <0.1		
pp-DDD	mg/kg	114380-32	<0.1 <0.1		
EndosulfanII	mg/kg	114380-32	<0.1 <0.1		
pp-DDT	mg/kg	114380-32	<0.1 <0.1		
Endrin Aldehyde	mg/kg	114380-32	<0.1 <0.1		
Endosulfan Sulphate	mg/kg	114380-32	<0.1 <0.1		
Methoxychlor	mg/kg	114380-32	<0.1 <0.1		
Surrogate TCMX	%	114380-32	75 75 RPD:0		

		Client Reference	e: E26305K, St lves
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
Acid Extractable metals in soil			Base + Duplicate + % RPD
Datedigested	-	114380-32	11/08/2014 11/08/2014
Date analysed	-	114380-32	11/08/2014 11/08/2014
Arsenic	mg/kg	114380-32	<4 <4
Lead	mg/kg	114380-32	79 58 RPD:31

Report Comments:

METALS_S # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Cli	ent:

Environmental Investigation Services	ph:	02 9888 5000
PO Box 976	Fax:	02 9888 5001
North Ryde BC NSW 1670		

Attention: Cameron Hollands

Sample log in details:	
Your reference:	E26305K, St Ives
Envirolab Reference:	114380
Date received:	08/08/14
Date results expected to be reported:	15/08/14
Samples received in appropriate condition for analysis:	YES
No. of samples provided	1 water, 32 soils
Turnaround time requested:	Standard
Temperature on receipt (°C)	7.7
Cooling Method:	Ice

Comments:

Sampling Date Provided:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month Soil and other solid samples - 2 months

YES

Samples collected in canisters - 1 week. Canisters will then be cleaned.

All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

LINVINOLAB 12 ASHFIELI CHATSWOO P: (02) 9910 F: (02) 9910 Attention: A	D STRE D NSW 06200 06201	2067		EIS Job Number Date Re Required Page:	sults	E26305K STANDARD 1/2			FROM: ENVIRONMENTAL INVESTIGATION SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 500 Attention: Cameron Hollands									
Sampler:	GF										Te	sts F	Requir	ed				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Arsenic	Lead	OC Pesticides									
7/08/2014	1.	DUP A	: 41 -	G	0	50.)	×	۲	×									
7/08/2014	2.	Dup B	-	G	ø	Soil	×	×	×									
7/08/2014	3.	Rinsate	-	G	V	Water	×	×	×									
7/08/2014	4.	81201	0	G	8	Fill		1							P.V.			
7/08/2014	S.	· 201	0.1-	G	Ø	Fill	X	$\mid X$	X									
7/08/2014	6.	201	0.4-	G	r	silthay		440								131		1
7/08/2014	7.	84202	0-0.2	G	0	Fill	X	X	X	276/227 22	1400 10		ROLA	Contractor of the	Env	Pedas		-
7/08/2014	8.		0.4-	G	Ø	Sillay						-1		B CI	Ph:	POG N	shing SW 20	067
7/08/2014	9.	B W 203	0.15	G	0	FILL	\geq	X	X	51.000 C	12.15 12	Job	No:	114	380	02) 9	910 62	200
7/08/2014	10.	a Maria	0.2-	G	0	S. Itay	X	X	X					eived	6.	8.14		
7/08/2014	11.	84204	0.1-	G	0	Fill		-		28292.08	1295-22, 752	Rec	ved	eived by: Ţ	F	C.C.C.Land	1000	10.615
7/08/2014	12.		0.3	G	٥	Fill	X	X	X		1227 FC	_	Contraction and the		0.00	CALCOLD ST.		
7/08/2014	-	BH205	0.2	G	+	Fill	X	×	×	11396 63	920 0	Ser	irity:	and the	Brok	en/Na	ne	2364
7/08/2014	14.		0.3 - 0.5	G	v	Fin								141				
7/08/2014	CELEBRATIC COMP	81206	0.2 -	G	d	Fill		1	X	0.63 Ki	0219	1636	Raid	20205		alaige	2010131	CEN R
7/08/2014	16.		0.6-	G	1982264-989	fill Sills clay		2	~	-	28.2				NGW.		14.24	2013
7/08/2014	17.	CHI MANAGARANA	0.8	G	0	Fill	K			588 (A)	100	11.0	1999					
7/08/2014	19.	61207	0.4 -	G	n	Fill		2	V	4844 B		Sile.				9292F3	NEALS	25.50
7/08/2014	20.	× *	0.6	G	0	Siltay	5	2	R			196					1333	
7/08/2014	21.	BM208	1.0	G	0	Fill	X	X	X	1997	3년3 달	HERE'S	6450945	10.9856	10.15		1999	
7/08/2014	22 -		0-2-	G	U	Fill												
7/08/2014	23.	e	0.50.7	G	6	S. Ity Clay	X	X	X	381/18 JP3			COLOR AND	NATIONAL PROPERTY OF	ALC: NO	DICEOP?	***	100
210812014				셬		3												
Remarks (com		detection lim		Date: 8/8			G - 2 A - Zi	50mg plock astic l		Jar tos Bag	eceive					Date:		

TO: ENVIROLAE 12 ASHFIEL CHATSWO(P: (02) 991(F: (02) 991(.D STR DD NSV 06200		D	EIS Job Number Date Re Require	sults	E26305K STANDARI	D				EN INV SEI REA MA	VESTI RVICE AR OI	NMEN GATIO S F 115 ARIE I 888 50	WICK	NSW	AD		
Attention: A	lieen			Page:		2/2						entio	SUT OF STREET,	R PO DERITS	Came	CO SAV ANY STAT		CONTRACT NO.
Location:	St Ive	es								San	nple	Prese	rved i	n Esky	on lo	e		
Sampler:	GF	T										Tests	s Requ	ired				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Arsenic	Lead	OC Pesticides									
7/08/2014	24.	Sh209	0.15	G	0	Fill	X	X	X	-		+	+	+	+	+	+	
7/08/2014	25.	1	0.2-	G	•	siltyay	X	×	->									
7/08/2014	26.	BH 210	0-1	G	a	Fill	X	×	×			T				an pressi		100
7/08/2014	27.	• •	0.1-	G	0	Fill												
7/08/2014	28.	x y	0.5-	G	0	silty clay	X	7	X	- 10 M		14 (18)	10000				ar (1960))	sent 18
7/08/2014	29	3n211	0-1	G	0	Fill	X	7	×									
7/08/2014	30.	()	0.2-0.4	G	0	sither	X	X	X	1.1.1997				1	en trente		<u>- 1085</u>	196
7/08/2014	31.	34212	0-	G	ø	Fill												Circle Circle
7/08/2014	32.	۲.)	0.2 -	G	r	Fill	X	X	X	THE PARTY OF				1000	at the set	-		
7/08/2014	33.	• 1	0.6-	G	0	silty	X	X	X									
7/08/20 14				1		L. J.			A STREET					a. 199799	5 725973	- A368	CON MIT	
7/08/2014				ø														
7/08/2014				G											1 100 04010	a conner:	1005000.00	
/08/2014				G												100		
7/08/2014	_			G											1 Property of		9675396	12 (2048)
108/2014				9														
108/2014				G												en e 340		
/08/2014				G														
108/2014				9												and and a second		
108/2014				q								2.						12020
/08/2014				g														
/08/2014			48	G														
108/2014				q														
/08/2014				6														
emarks (com	ments/o	detection limi	ts required):				Sample G - 250 A - Zip P - Plas	Omg G lock A	ilass Ja sbesto	ar Is Bag								
linquished B	y: EIS /	cameron hol	lands D	ate: 8/8/	14		Time: A		9	R	eceiv D:	red B	y: PD	Ð	S	Date:	. 7 4	t-

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

114380-A

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Cameron Hollands

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received E26305K, St Ives Additional testing on 6 soils 08/08/14 / 18/08/14

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 25/08/14
 / 25/08/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

Metals in TCLP USEPA1311						
Our Reference:	UNITS	114380-A-5	114380-A-7	114380-A-12	114380-A-19	114380-A-29
Your Reference		BH201	BH202	BH204	BH207	BH211
Depth		0.1-0.3	0-0.2	0.1-0.3	0.4-0.6	0-0.1
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/08/2014	20/08/2014	20/08/2014	20/08/2014	20/08/2014
Date analysed	-	21/08/2014	21/08/2014	21/08/2014	21/08/2014	21/08/2014
pH of soil for fluid# determ.	pH units	5.7	9.4	7.9	7.7	7.6
pH of soil for fluid # determ. (acid)	pH units	1.4	1.6	1.5	1.5	1.4
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	4.8	5.2	4.9	4.9	4.8
Arsenic in TCLP	mg/L	0.3	0.3	1.7	[NA]	0.4
Lead in TCLP	mg/L	[NA]	0.3	[NA]	1.7	3.8

Metals-ASLP Neutral (ICP-MS)						
Our Reference:	UNITS	114380-A-5	114380-A-7	114380-A-12	114380-A-19	114380-A-26
Your Reference		BH201	BH202	BH204	BH207	BH210
Depth		0.1-0.3	0-0.2	0.1-0.3	0.4-0.6	0-0.1
Date Sampled		07/08/2014	07/08/2014	07/08/2014	07/08/2014	07/08/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/08/2014	20/08/2014	20/08/2014	20/08/2014	20/08/2014
Date analysed	-	21/08/2014	21/08/2014	21/08/2014	21/08/2014	21/08/2014
pH of final Leachate	pH units	5.2	8.9	7.3	7.4	6.9
pH of final Leachate Arsenic in ASLP	pH units µg/L	5.2 1,600	8.9 230	7.3 9,300	7.4 [NA]	6.9 300

Metals-ASLP Neutral (ICP-MS)		
Our Reference:	UNITS	114380-A-29
Your Reference		BH211
Depth		0-0.1
Date Sampled		07/08/2014
Type of sample		Soil
Date extracted	-	20/08/2014
Date analysed	-	21/08/2014
pH of final Leachate	pH units	6.8
Arsenic in ASLP	µg/L	410
Lead in ASLP	µg/L	830

MethodID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311 and in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-022 ICP-MS	Determination of various metals by ICP-MS following leaching using neutralised deionised water by AS 4439.3 - 1997.

Client Reference:	E26305K, St Ives
••.•.•.•	

					2030317, 31 10				-
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Dup	licate results	Spike Sm#	Spike % Recovery
Metals in TCLP USEPA1311						Base	e II Duplicate II %RPD		
Date extracted	-			21/08/2 014	[NT]		[NT]	LCS-4	21/08/2014
Date analysed	-			21/08/2 014	[NT]		[NT]	LCS-4	21/08/2014
Arsenic in TCLP	mg/L	0.05	Metals-020 ICP-AES	<0.05	[NT]		[NT]	LCS-4	101%
Lead in TCLP	mg/L	0.03	Metals-020 ICP-AES	<0.03	[NT]		[NT]	LCS-4	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Dup	licate results	Spike Sm#	Spike % Recovery
Metals-ASLPNeutral (ICP-MS)						Base	e II Duplicate II %RPD		
Date extracted	-			21/08/2 014	114380-A-5	20/	/08/2014 20/08/2014	LCS-1	21/08/2014
Date analysed	-			21/08/2 014	114380-A-5	21/	/08/2014 21/08/2014	LCS-1	21/08/2014
Arsenic in ASLP	µg/L	1	Metals-022 ICP-MS	<1	114380-A-5	16	600 1800 RPD: 12	LCS-1	106%
Lead in ASLP	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	LCS-1	118%
QUALITYCONTROL	UNITS	s i	Dup.Sm#		Duplicate		Spike Sm#	Spike % Reco	overv
Metals in TCLP USEPA131		-		Base+[Duplicate + %RP	D			
Date extracted	-		[NT]		[NT]		114380-A-19	21/08/201	4
Date analysed	-		[NT]		[NT]		114380-A-19	21/08/201	4
Arsenic in TCLP	mg/L	-	[NT]		[NT]		[NR]	[NR]	
Lead in TCLP mg/L		-	[NT]		[NT]		114380-A-19	129%	
QUALITYCONTROL Metals-ASLP Neutral (ICP MS)	Metals-ASLP Neutral (ICP- Base			Duplicate Base + Duplicate + %RPD		Spike Sm#	Spike % Reco	overy	
Date extracted	-		[NT]		[NT]		114380-A-7	21/08/201	4
Date analysed	-		[NT]		[NT]		114380-A-7	21/08/201	4
Arsenic in ASLP	µg/L		[NT]		[NT]		114380-A-7	102%	
Lead in ASLP	μg/L		[NT]	1	[NT]		114380-A-7	#	

Report Comments:

METALS_ASLP_NEU: # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Sample Reference		Sample Depth	ASLP	TCLP	
BH201	-5	0.1-0.3	Arsenic	Arsenic	
BH202	.7	0-0.2	Arsenic & lead	Arsenic & lead	
BH204	-12	0.1-0.3	Arsenic	Arsenic	
BH207	- 19	0.4-0.6	Lead	Lead	
BH210	-26	0-0.1	Asenic & lead	NA	
BH211	- 28	0-0.1	Asenic & lead	Asenic & lead	

4/4380 A Std T/A due 2018.

APPENDIX C

Abbreviations, Sampling Protocols and QA/QC Definitions

ABBREVIATIONS

AEC	Area of Environmental Concern
AGST	Above Ground Storage Tank
AHD	Australian Height Datum
ALTPQL	All Less than PQL
ANZECC	Australian and New Zealand Environment Conservation Council
ASS	Acid Sulfate Soil
BA/DA	Building Approval and Development Application
B(a)P	Benzo(a)pyrene
BGL	Below Ground Level
BH	Borehole
BOM	Bureau of Meteorology
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
COC	Chain of Custody documentation
CLM	Contaminated Land Management
CMP	Construction Management Plan
CSM	Conceptual Site Model
СТ	Contamination Threshold
DBYD	Dial Before You Dig
DEC	Department of Environment and Conservation (now part of EPA)
DECC	Department of Environment and Climate Change (now part of EPA)
DECCW	Department of Environment, Climate Change and Water (now part of EPA)
DWE	NSW Department of Water and Energy
DO	Dissolved Oxygen
DP	Deposited Plan
DQIs	Data Quality Indicators
DQOs	Data Quality Objective
EC	Electrical Conductivity
Eh	Redox Potential
EILs	Ecological Investigation Levels
ENM	Excavated Natural Material
EMP	Environmental Management Plan
ESA	Environmental Site Assessment
FR	Field Rinsate
GAI	General Approvals of Immobilisation
GILs	Groundwater Investigation Levels
GPS	Global Positioning System
Hazmat	Hazardous Materials Assessment
HILs	Health Based Investigation Level
HM	Heavy Metals
HMTVs	Hardness Modified Trigger Values
LNAPLs	Light Non-Aqueous Phase Liquids
NATA	National Association of Testing Authorities
NDLR	Not Detected at Limit of Reporting
NEPC	National Environmental Protection Council
NEPM	National Environmental Protection Measure
NHMRC	National Health and Medical Research Council
NSW EPA	Environmental Protection Authority of NSW
MGA	Map Grid of Australia
OCPs	Organochlorine Pesticides
OEH	NSW Office of Environment and Heritage
OPPs	Organophosphate Pesticides
PAH	Polycyclic Aromatic Hydrocarbons

ABBREVIATIONS

PASS PCC PCBs	Potential ASS Potential Contaminants of Concern
PLBS	Polychlorinated Biphenyls Photo-ionisation Detector
POEO PPIL	Protection of Environmental Operations
PPIL PQL	Provisional Phyto-toxicity Investigation Levels Practical Quantitation Limit
RAP	Remediation Action Plan
RL	Reduced Level
RPD	Quality Assurance and Quality Control
SAC	Relative Percentage Difference Site Assessment Criteria
SAQP	
	Sampling, Analysis and Quality Plan
SAS SCC	Site Audit Statement Specific Contamination Concentration
SD	Standard Deviation
SEPP	State Environmental Planning Policy
sPOCAS	suspension Peroxide Oxidation Combined Acidity and Sulfate
SPUCAS	Standard Penetration Test
SVOCs	Semi-Volatile Organic Compounds
SWL	Standing Water Level
TB	Trip Blank
TCLP	Toxicity Characteristic Leaching Procedure
TDS	Total Dissolved Solids
TP	Test Pit
ТРН	Total Petroleum Hydrocarbons
TRH	Total Recoverable Hydrocarbons
TS	Trip Spike
USEPA	United States Environmental Protection Agency
UCL	Upper Confidence Limit
UPSS	Underground Petroleum Storage Systems
UST	Underground Storage Tank
VENM	Virgin Excavated Natural Material
VOCs	Volatile Organic Compounds
WC	Waste Classification
WHS	Workplace, Health and Safety
	· · ·

SOIL AND GROUNDWATER SAMPLING PROTOCOLS

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by EIS.The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

Soil Sampling

- a) Prepare a test pit/borehole log.
- b) Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The work area should be at a distance from the drill/rig excavator such that the drill rig/excavator can operate in a safe manner.
- c) Ensure all sampling equipment has been decontaminated prior to use.
- d) Remove any surface debris from the immediate area of the sampling location.
- e) Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possibly to prevent the loss of volatiles. If possible, fill the glass jars completely.
- f) Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- g) Label the jar and/or bag with the EIS job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- h) Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurementsare taken following equilibration of the headspace gasses in partly filled ziplock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- i) Record the lithology of the sample and sample depth on the borehole/test pit log in accordance with AS1726-1993²¹.
- j) Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab.All samples are preserved in accordance with AS 4482.1:2005, AS 4482.2:1999 and AS/NZS 5667.1:1998.
- k) Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- I) Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

Decontamination Procedures for Soil Sampling Equipment

- a) All of the equipment associated with the soil sampling procedure should be decontaminatedbetween every sampling location.
- b) The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent (Decon 90)
 - Potable water
 - Stiff brushes
 - Plastic sheets
- c) Ensure the decontamination materials are clean prior to proceeding with the decontamination.
- d) Fill both buckets with clean potable water and add phosphate free detergent to one bucket.
- e) In the bucket containing the detergent scrub the sampling equipment until all the material attached to the equipment has been removed.
- f) Rinse sampling equipment in the bucket containing potable water.

²¹Geotechnical Site Investigations, Standards Australia 1993 (AS1726-1993)

g) Place cleaned equipment on clean plastic sheets.

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes that equipment should not be used until it has been thoroughly cleaned.

Groundwater Sampling

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- a) After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells (well development) to remove any water introduced during the drilling process and/or the water that is disturbed during installation of the monitoring well. This should be completed prior to purging and sampling.
- b) Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior to purging or sampling the condition of each well should observed and any anomalies recorded on the field data sheets. The following information should be noted: the condition of the well, noting any signs of damage, tampering or complete destruction; the condition and operation of the well lock; the condition of the protective casing and the cement footing (raised or cracked); and, the presence of water between protective casingand well.
- c) Take the groundwater level from the collar of the piezometer/monitoring well using an electronic dipmeter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- d) Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micro-purge (or low flow) techniques. Layout and organize all equipment associated with groundwater sampling in a location where they will not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment generally required includes:
 - > Micropore filtration system or Stericup single-use filters (for heavy metals samples).
 - > Filter paper for Micropore filtration system.
 - Bucket with volume increments.
 - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles.
 - Bucket with volume increments.
 - Flow cell.
 - > pH/EC/Eh/T meters.
 - > Plastic drums used for transportation of purged water.
 - Esky and ice.
 - Nitrile gloves.
 - Distilled water (for cleaning).
 - Electronic dip meter.
 - Micro-purge pump pack and pump head.
 - > Air and water tubing for Micro-purge.
 - Groundwater sampling forms.
- e) If single-use stericup filtration is not being used, clean the Micropore filtration systemthoroughly with distilled water prior to use and between each sample. Filter paper should bechanged between samples. 0.45um filter paper should be placed below the glassfibre filter paper in the filtration system.
- f) Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The

procedure for decontamination of groundwaterequipment is outlined at the end of this section.

- g) Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow/micropurgesampling equipment to reduce the disturbance of the water column and loss of volatiles.
- i) During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential and groundwater levels are monitored (where possible) using calibrated field instrumentsto assess the development of steady state conditions. Steady state conditions are generally considered to have been achieved when the difference in the pH measurements was less than 0.2 units and the difference in conductivity was less than 10%.
- j) All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples areobtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- I) All samples are preserved in accordance with water sampling requirements detailed in theNEPM 1999 and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage in an insulated sample container with ice in accordance with AS/NZS 5667.1:1998.
- m) Record the sample on the appropriate log in accordance with AS1726:1993. At the end of each water sampling complete a chain of custody form.

Decontamination Procedures for Groundwater Sampling Equipment

- a) All of the equipment associated with the groundwater sampling procedure (other than single-use items) should be decontaminated between every sampling location.
- b) The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent.
 - Potable water.
 - Distilled water
 - Plastic Sheets or bulk bags (plastic bags)
- c) Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- d) Flush potable water and detergent through pump head. Wash sampling equipment and pump headusing brushes in the bucket containing detergent until all materials attached to the equipment are removed.
- e) Flush pump head with distilled water.
- f) Change water and detergent solution after each sampling location.
- g) Rinse sampling equipment in the bucket containing distilled water.
- h) Place cleaned equipment on clean plastic sheets.
- i) If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned

QA/QC DEFINITIONS

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994²²) methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (H. Keith 1991²³).

Practical Quantitation Limit (PQL), Limit of Reporting (LOR) and Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection limit (MDL) for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations. "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" Keith 1991.

Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD). Acceptable targets for precision in this report will be less than 50% RPD for concentrations greater than ten times the PQL, less than 75% RPD for concentrations between five and ten times the PQL and less than 100% RPD for concentrations that are less than five times the PQL.

Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured. The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes.

The proximity of an averaged result to the true value, where all random errors have been statistically removed. Accuracy is measured by percent recovery. Acceptable limits for accuracy generally lie between 70% to 130% recoveries. Certain laboratory methods may allow for values that lie outside these limits.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

²²SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, US EPA, 1994 (US EPA SW-846)

²³Environmental Sampling and Analysis, A Practical Guide, Keith, H, 1991 (Keith 1991)

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- > All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- > NATA stamp on reports.

Comparability

Comparability is the evaluation of the similarity of conditions (eg. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel;
- Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- > Spatial and temporal changes (due to environmental dynamics).

Blanks

The purpose of laboratory and field blanks is to check for artifacts and interferences that may arise during sampling and analysis.

Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

<u>(Spike Sample Result – Sample Result)</u> x 100 Concentration of Spike Added

Surrogate & Trip Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate and Trip Spikes are reported as percent recovery.

Duplicates

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

$$\frac{(D1 - D2)}{(D1 + D2)/2} \times 100$$

APPENDIX D

Equipment Calibration Records

Calibration and Service Report – PID

ACTIVE ENVIRONMENTAL SOLUTIONS

Company:	Environmental Investigation Services	Manufacturer:	RAE Systems	Serial #:	110-006735
Contact:	Katie McGrath	Instrument:	MiniRAE 2000	Asset #:	EIS1
Address:	Rear 115 Wicks Road	Model:	PGM-7600	Part #:	002
	MACQUARIE PARK, NSW 2113	Configuration:	VOC	Sold:	-
Phone:	02 9888 5000	Wireless:	-	Last Cal:	5/05/2012
Fax:	02 9888 5004	Network ID:	-	Job #:	AES.020046
Email:	kmcgrath@jkgroup.net.au	Unit ID:	~	Cal Spec:	STD
				Order #:	7.11.12KM

Item	Test	Pass/Fail	Comments	Part Code	S/W
Battery	NiCd, NiMH, Dry cell, Li Ion	×	Replaced faulty rechargeable battery	0123051000E	1
Charger	Charger, Power supply	-			
	Cradle	-			
Pump	Flow	1	>450mL/min		
Filter	Filter, fitting, etc	×	New Filter Fitted	002-3022-000	1
Alarms	Audible, visual, vibration	1			
Display	Operation	1			
Switches	Operation	1			
PCB	Operation	1			_
Connectors	Condition	1		-	
Firmware	Version	1	Version: 2.00		
Datalogger	Operation	1			
Lamp Housing	Condition/operation	1			
Monitor Housing	Condition	1			
Case	Condition/Type	1			
Sensors	Constant of the second second second		and the second	AND CAN BE AND AND	1.1.12
PID		1			
Lamp	the second s	1			
			*		
				Calibration	1
				Labour	0.5
	Lamp	Rechargeable and Sensor C	er's Report Battery Pack. Pump Flow Checked. leaned. New Filter Fitted. d, Unit Serviceable.		

Calibration Certificate

Sensor Type	Туре	Serial No:	Span	Concentration	Traceability	CF	Reading	
		Gas		Lot #		Zero	Span	
PID	10.6ev	021689	Isobutylene	100ppm	S21306		0	100

Calibrated/Repaired by: **Bill Knobel** Date: 2 November 2012 Next Due: 2 May 2013 Melbourne- Head Office: Unit 3 266 Bolton Street ELTHAM VIC 3095 T: +(613) 9431 3500 F: + (613) 9431 3577 ASHFIELD NSW 2131 MALAGA WA 6090 T: +(612) 9716 5966 F: + (612) 9716 5988 T: +(618) 9249 5663 F: + (618) 9249 5362 Sydney - Office : S14 Lv1 2 6-8 Holden Street Perth - Office: Unit 6 41 Holder Way sales@aesolutions.com.au www.aesolutions.com.au s:\service reports\gas\environmental. investigation services\110-006735.doc